Abstract

Achieving a broadband antireflection property from material surfaces is one of the highest priorities for those who want to improve the efficiency of solar cells or the sensitivity of photo-detectors. To lower the reflectance of a surface, we are concerned with the study of the optical response of flat-top and patterned-topped cone shaped silicon gratings, based on previous work exploring pyramid gratings. Through rigorous numerical methods such as Finite Different Time Domain, we first designed several flat-top structures that theoretically demonstrate an antireflective character within the middle infrared region. From the opto-geometrical parameters such as period, depth and shape of the pattern determined by numerical analysis, these structures have been fabricated using controlled slope plasma etching processes. In order to extend the antireflective properties up to the visible wavelengths, patterned-topped cones have been fabricated as well. Afterwards, optical characterizations of several samples were carried out. Thus, the performances of the flat-top and patterned-topped cones have been compared in the visible and mid infrared range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010).
    [CrossRef]
  2. K. M. Baker, “Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces,” Appl. Opt.38(2), 352–356 (1999).
    [CrossRef] [PubMed]
  3. D. M. Braun, “Design of single layer antireflection coatings for InP/In0.53Ga0.47As/InP photodetectors for the 1200-1600-nm wavelength range,” Appl. Opt.27(10), 2006–2011 (1988).
    [CrossRef] [PubMed]
  4. K. T. Park, Z. Guo, H. D. Um, J. Y. Jung, J. M. Yang, S. K. Lim, Y. S. Kim, and J. H. Lee, “Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics,” Opt. Express19(S1Suppl 1), A41–A50 (2011).
    [CrossRef] [PubMed]
  5. N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and H. Masuda, “Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module,” Opt. Express19(S2Suppl 2), A118–A125 (2011).
    [CrossRef] [PubMed]
  6. J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
    [CrossRef] [PubMed]
  7. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008).
    [CrossRef]
  8. H. A. MacLeod, Thin-Film Optical Filters (Taylor & Francis Ed. IV, (2010) p. 668.
  9. P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the ‘moth eye’ principle,” Nature244(5414), 281–282 (1973).
    [CrossRef]
  10. M. Born and E. Wolf, in Principle of Optics (Pergamon, 1980) pp. 705–708.
  11. E. Grann, M. G. Varga, and D. Pommet, “Optimal design for antireflective tapered two dimensional subwavelength grating structures,” J. Opt. Soc. Am. A12(2), 333–339 (1995).
    [CrossRef]
  12. S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
    [CrossRef]
  13. J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys.109(5), 053513 (2011).
    [CrossRef]
  14. H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
    [CrossRef]
  15. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
    [CrossRef]
  16. R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).
  17. L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
    [CrossRef] [PubMed]
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995).
    [CrossRef]
  19. E. D. Palik, in Handbook of Optical Constants, (Academic Press, 555–568, 1985, I).
  20. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
    [CrossRef] [PubMed]

2012

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

2011

2010

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010).
[CrossRef]

S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

2009

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

2008

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008).
[CrossRef]

2007

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

2003

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

1999

1995

1988

1973

P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the ‘moth eye’ principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Baker, K. M.

Berginc, G.

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Bouffaron, R.

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).

Brabec, C. J.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008).
[CrossRef]

Branz, H. M.

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Braun, D. M.

Brissonneau, V.

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chattopadhyay, S.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010).
[CrossRef]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, K. H.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010).
[CrossRef]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L. C.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010).
[CrossRef]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the ‘moth eye’ principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Dennler, G.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008).
[CrossRef]

Escoubas, L.

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Flory, F.

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Forberich, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008).
[CrossRef]

Fromherz, T.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008).
[CrossRef]

Ganguly, A.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010).
[CrossRef]

Gaylord, T. K.

Giovannini, H.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Grann, E.

Grann, E. B.

Guo, Z.

Hayashi, K.

Hildebrandt, M.

J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys.109(5), 053513 (2011).
[CrossRef]

Hingerl, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008).
[CrossRef]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Huang, Y. F.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010).
[CrossRef]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Husain, M.

S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the ‘moth eye’ principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Ijiro, T.

Jen, Y. J.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010).
[CrossRef]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Jung, J. Y.

Kar, M.

S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Kim, Y. S.

Kumar, D.

S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Kumar, V.

S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lee, J. H.

Lim, S. K.

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Loli, M.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Lu, M.

J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys.109(5), 053513 (2011).
[CrossRef]

Masclet, P.

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).

Masuda, H.

Meier, D. L.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Moharam, M. G.

Oh, J.

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

Okamoto, E.

Page, M. R.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Park, K. T.

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Pommet, D.

Pommet, D. A.

Scharber, M. C.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008).
[CrossRef]

Simon, J. J.

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Singh, K.

S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Srivastava, S. K.

S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Stradins, P.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Torchio, P.

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).

Um, H. D.

Varga, M. G.

Yamada, N.

Yang, J. M.

Yost, V. E.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Yuan, H.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Yuan, H. C.

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys.109(5), 053513 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

J. Appl. Phys.

J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys.109(5), 053513 (2011).
[CrossRef]

J. Opt. Soc. Am. A

Mater. Sci. Engineering: R: Reports

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010).
[CrossRef]

Nat. Nanotechnol.

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Nature

P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the ‘moth eye’ principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Opt. Commun.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Sol. Energy Mater. Sol. Cells

S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Thin Solid Films

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008).
[CrossRef]

Other

H. A. MacLeod, Thin-Film Optical Filters (Taylor & Francis Ed. IV, (2010) p. 668.

M. Born and E. Wolf, in Principle of Optics (Pergamon, 1980) pp. 705–708.

E. D. Palik, in Handbook of Optical Constants, (Academic Press, 555–568, 1985, I).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic view and geometric parameters of the flat-top (a) and patterned-topped (b) pyramids. P is the period, T the thickness and M the flat-top’s length. Concerning the patterned-topped structure, m, p and t are the parameters of the second periodicity level.

Fig. 2
Fig. 2

Schematic of the unit cell for the FDTD calculation and the corresponding boundary conditions.

Fig. 3
Fig. 3

Illustration of a diffraction grating without any orders (a), with orders in the substrate only (b), and with transmitted and reflected orders (c).

Fig. 4
Fig. 4

3D mapping of the diffracted orders efficiency in the incident medium versus the wavelength for flat-top pyramids grating of 1 µm (a) and 1.3 µm (b) period at normal incidence.

Fig. 5
Fig. 5

Reflectance spectrum at normal incidence of a flat-top pyramid grating with T = 1.57 µm, M = 0.375 µm and s = 0 µm. The parameter P is varied from 0.7 to 1.3 µm.

Fig. 6
Fig. 6

Reflectance spectrum at normal incidence of a flat-top pyramid grating with P = 1 µm, M = 0.375 µm and s = 0 µm. The parameter T is varied from 1.1 to 2 µm.

Fig. 7
Fig. 7

Reflectance spectrum at normal incidence of a flat-top pyramid grating with T = 1.57 µm, P = 1 µm and s = 0 µm. The parameter M is varied from 0.1 to 0.6 µm.

Fig. 8
Fig. 8

Schematic view of the spacing between the structures (a) and reflectance spectra at normal incidence of flat -top pyramid grating with P = 1 µm, M = 0.375 µm and T = 1.5 µm. The spacing s is varied from 0 to 1 µm (b).

Fig. 9
Fig. 9

Calculated reflectance spectra at normal incidence of flat-top and patterned-topped pyramids. Parameters of the flat-top pyramids are P = 1 µm, M = 0.375 µm, T = 1.5625 µm and spacing s = 0 µm. Parameters of the patterned-topped pyramids' first level are P = 1 µm, T = 1.25 µm and M = 0.5 µm. Parameters of the second level are p = 0.25 µm, t = 0.3125 µm, m = 0.125 µm.

Fig. 10
Fig. 10

SEM picture of flat-topped (a) and patterned-topped (b) silicon cones gratings.

Fig. 11
Fig. 11

Calculated reflectance spectra at normal incidence of a flat-top pyramid and a flat-top cone grating with P = 1 µm, T = 1.5 µm, M = 0.375 µm and s = 0 µm (a), schematic top view of flat-top pyramid and cone gratings and their parameters (b).

Fig. 12
Fig. 12

Reflectance measurements of the fabricated silicon flat-top cone gratings.

Fig. 13
Fig. 13

Reflectance spectra of flat-and patterned-topped cones gratings measured in the visible by integrating sphere (a) and in Infrared by FTIR spectrometry (b).

Tables (4)

Tables Icon

Table 1 Ө value for a grating with different length period P, and with M = 0.375 µm, T = 1.5 µm and s = 0 µm.

Tables Icon

Table 2 Ө value for a grating with different thicknesses T, and with P = 1 µm, M = 0.375 µm and s = 0 µm.

Tables Icon

Table 3 Ө value for a grating with different length of the flat-top M, and with P = 1 µm, T = 1.5 µm and s = 0 µm.

Tables Icon

Table 4 Parameters of the fabricated flat top cone gratings

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ=arctan( 2T PM ).
P λ n s + n i sin θ i .
λ n s + n i sin θ i P λ n i + n i sin θ i .
λ n i + n i sin θ i P.

Metrics