Abstract

Depending on cavity configuration, a c-cut Nd:YVO4 laser by using a large-apex-angle axicon can execute azimuthally and radially polarized operations. A large-apex-angle axicon dominates and stabilizes the generation of the pattern, and expands the difference between the ordinary and extraordinary rays to generate off-axis cylindrical vector beams. When the cavity length is properly adjusted, the polarization of off-axis laser beams can exhibit a transition from azimuthal to radial polarization. The degree of polarizations can be up to 95.4% ± 2.6% and 94% ± 3.7% for azimuthally and radially polarized beams, respectively; and the slope efficiencies are approximately 20.5% for both polarized operations. Using two-pass-mode ray tracing, the ray generating mechanisms and divergent angles of their patterns were analyzed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics55(3), 3539–3545 (1997).
    [CrossRef]
  2. S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett.19(22), 1807–1809 (1994).
    [CrossRef] [PubMed]
  3. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32(13), 1455–1461 (1999).
    [CrossRef]
  4. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
    [CrossRef]
  5. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt.29(15), 2234–2239 (1990).
    [CrossRef] [PubMed]
  6. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  7. M. Bashkansky, D. Park, and F. K. Fatemi, “Azimuthally and radially polarized light with a nematic SLM,” Opt. Express18(1), 212–217 (2010).
    [CrossRef] [PubMed]
  8. D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett.20(7), 266–267 (1972).
    [CrossRef]
  9. M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express19(3), 1905–1914 (2011).
    [CrossRef] [PubMed]
  10. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
    [CrossRef]
  11. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett.28(10), 807–809 (2003).
    [CrossRef] [PubMed]
  12. D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett.35(13), 2290–2292 (2010).
    [CrossRef] [PubMed]
  13. Y. Mushiake, K. Matzumurra, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE60(9), 1107–1109 (1972).
    [CrossRef]
  14. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett.30(22), 3063–3065 (2005).
    [CrossRef] [PubMed]
  15. J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express14(8), 3304–3311 (2006).
    [CrossRef] [PubMed]
  16. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett.31(14), 2151–2153 (2006).
    [CrossRef] [PubMed]
  17. H.-H. Wu, “Formation of off-axis beams in an axially pumped solid-state laser,” Opt. Express12(15), 3459–3464 (2004).
    [CrossRef] [PubMed]
  18. K. Yonezawa, Y. Kozawa, and S. Sato, “Focusing of radially and azimuthally polarized beams through a uniaxial crystal,” J. Opt. Soc. Am. A25(2), 469–472 (2008).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

2009 (1)

2008 (1)

2006 (2)

2005 (1)

2004 (1)

2003 (1)

2000 (1)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32(13), 1455–1461 (1999).
[CrossRef]

1997 (1)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics55(3), 3539–3545 (1997).
[CrossRef]

1996 (1)

1994 (1)

1990 (1)

1972 (2)

D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett.20(7), 266–267 (1972).
[CrossRef]

Y. Mushiake, K. Matzumurra, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE60(9), 1107–1109 (1972).
[CrossRef]

Bashkansky, M.

Bisson, J.-F.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Esarey, E.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics55(3), 3539–3545 (1997).
[CrossRef]

Fatemi, F. K.

Ford, D. H.

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Hafizi, B.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics55(3), 3539–3545 (1997).
[CrossRef]

Harada, Y.

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Jackel, S.

Kimura, W. D.

Kozawa, Y.

Li, G.

Li, J.

Li, R.

Li, X.

Lin, D.

Matzumurra, K.

Y. Mushiake, K. Matzumurra, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE60(9), 1107–1109 (1972).
[CrossRef]

Meir, A.

Moshe, I.

Mushiake, Y.

Y. Mushiake, K. Matzumurra, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE60(9), 1107–1109 (1972).
[CrossRef]

Nakajima, N.

Y. Mushiake, K. Matzumurra, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE60(9), 1107–1109 (1972).
[CrossRef]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32(13), 1455–1461 (1999).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Park, D.

Pohl, D.

D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett.20(7), 266–267 (1972).
[CrossRef]

Sato, S.

Schadt, M.

Senatsky, Y.

Senatsky, Yu.

Sprangle, P.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics55(3), 3539–3545 (1997).
[CrossRef]

Stalder, M.

Thirugnanasambandam, M. P.

Tidwell, S. C.

Ueda, K.

Waseda, Y.

Wu, H.-H.

Xia, K.

Yonezawa, K.

Zhan, Q.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett.20(7), 266–267 (1972).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32(13), 1455–1461 (1999).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics55(3), 3539–3545 (1997).
[CrossRef]

Proc. IEEE (1)

Y. Mushiake, K. Matzumurra, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE60(9), 1107–1109 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Experimental setup (b) Output power as a function of pump power at z = 3.6cm.

Fig. 2
Fig. 2

(a)-(d) The near-field pattern at various polarized angle. “N” represents the pattern measured without adding polarizer and the red arrow represents the direction of the polarization angle, which are the same representations in the following figures.

Fig. 3
Fig. 3

(a) The blocked part of the knife edge with the dashed green shape, and (b) the pattern after blocked.

Fig. 4
Fig. 4

(a) and (b) show the far-field patterns and intensity distributions at horizontal and vertical polarization.

Fig. 5
Fig. 5

(a) The output power as a function of the angle of the analyzer for the ring-pattern laser beam as the slit angle of - 60°. (b) Polarization direction as a function of the slit angle

Fig. 6
Fig. 6

The ring-pattern beam with radial polarization at various polarization angles.

Fig. 7
Fig. 7

The arc-pattern beams with (a) radial and (b) azimuthal polarization at various polarized angles.

Fig. 8
Fig. 8

(a) Geometrical diagram of ray tracing at hemispherical cavity. (b) The divergent angle as a function of the axicon’s position. The solid square and empty triangle represent the experimental results with β = 1° for the Nd:YVO4 and Nd:YAG lasers, respectively. The different lines correspond to the numerical results for the various β’s values.

Fig. 9
Fig. 9

The pattern in hemispherical configuration without the axicon at various polarized angles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ out = sin 1 (sinθcosβsinβ n 2 sin 2 θ )+β

Metrics