Abstract

We propose a novel broadband coupler for silicon photonics using a hybrid plasmonic waveguide section. The hybrid plasmonic waveguide is used to create an asymmetric section in the middle of a silicon nanowire waveguide coupler to introduce a phase delay to allow for a 3-dB power coupling ratio over a 150 nm bandwidth around 1.55 µm. The device is very compact (<8.5 µm) and has a low insertion loss (<0.15 dB).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron.39(4), 608–613 (2003).
    [CrossRef]
  2. C. K. Kirendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D: All. Phys.37(18), R197–R216 (2004).
    [CrossRef]
  3. F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NG-PONs),” IEEE Trans. Commun.59(5), 1378–1388 (2011).
    [CrossRef]
  4. A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
    [CrossRef]
  5. L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” CLEO, paper CThAA2 (2011).
  6. R. Halir, A. M. Novo, A. O. Monux, M. Fernandez, J. G. W. Perez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sib-wavelength structure,” Opt. Express20, 13470–13477 (2012).
  7. S.-H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” JOSA B.27(5), 941–947 (2010).
    [CrossRef]
  8. A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
    [CrossRef]
  9. B. Chen, H. Lu, D. Zhao, Y. Yuan, and M. Iso, “Optimized design of polarization-independent and temperature-insensitive broadband optical waveguide coupler by use of fluorinated polyimide,” Appl. Opt.42(20), 4196–4201 (2003).
    [CrossRef] [PubMed]
  10. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Supermode propagation in low index medium,” CLEO (2007) paper JThD112 (2007).
  11. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express18(12), 12971–12979 (2010).
    [CrossRef] [PubMed]
  12. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
    [CrossRef] [PubMed]
  13. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express18(20), 21013–21023 (2010).
    [CrossRef] [PubMed]
  14. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic TE-pass polarizer for silicon-on-insulator platform,” Opt. Lett.37, 4814–4816 (2012).
    [CrossRef] [PubMed]
  15. J. N. Caspers, M. Z. Alam, and M. Mojahedi, “Compact hybrid plasmonic polarization rotator,” Opt. Lett.37(22), 4615–4616 (2012).
    [CrossRef] [PubMed]
  16. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett.36(17), 3371–3373 (2011).
    [CrossRef] [PubMed]
  17. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express19(2), 838–847 (2011).
    [CrossRef] [PubMed]
  18. H.-S. Chu, Y. A. Akimov, P. Bai, and E.-P. Li, “Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale,” J. Opt. Soc. Am. B28 (12), 2895–2901 (2011).
    [CrossRef]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 2007).
  20. E. D. Palik, Handbook of optical constants of solids, (Academic Press, Inc. 1985).
  21. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  22. FDTD Solutions Reference Guide, (Lumerical Solutions, 2012).
  23. G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, “Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique,” IEEE Trans. Microw. Theory Tech.42(10), 1896–1903 (1994).
    [CrossRef]
  24. V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-insensitive directional couplers based on SOI wire waveguides,” The Open Optics Journal2(1), 6–9 (2007).
    [CrossRef]
  25. http://www.nanofab.ualberta.ca/wp-content/uploads/2009/03/pecvd_process_control.pdf

2012

2011

2010

2009

2007

V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-insensitive directional couplers based on SOI wire waveguides,” The Open Optics Journal2(1), 6–9 (2007).
[CrossRef]

2004

C. K. Kirendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D: All. Phys.37(18), R197–R216 (2004).
[CrossRef]

2003

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron.39(4), 608–613 (2003).
[CrossRef]

B. Chen, H. Lu, D. Zhao, Y. Yuan, and M. Iso, “Optimized design of polarization-independent and temperature-insensitive broadband optical waveguide coupler by use of fluorinated polyimide,” Appl. Opt.42(20), 4196–4201 (2003).
[CrossRef] [PubMed]

1994

G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, “Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique,” IEEE Trans. Microw. Theory Tech.42(10), 1896–1903 (1994).
[CrossRef]

1992

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Aboketaf, A.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” CLEO, paper CThAA2 (2011).

Aitchison, J. S.

Akimov, Y. A.

Alam, M. Z.

Aurzada, F.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NG-PONs),” IEEE Trans. Commun.59(5), 1378–1388 (2011).
[CrossRef]

Bai, P.

Banks, J. M.

Blumenthal, D. J.

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron.39(4), 608–613 (2003).
[CrossRef]

Cao, L.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” CLEO, paper CThAA2 (2011).

Caspers, J. N.

Cheben, P.

Chen, B.

Cheng, Q. Q.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chu, H.-S.

Collins, R. T.

Dai, D.

Dandridge, A.

C. K. Kirendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D: All. Phys.37(18), R197–R216 (2004).
[CrossRef]

Davanço, M.

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron.39(4), 608–613 (2003).
[CrossRef]

Dell’Olio, F.

V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-insensitive directional couplers based on SOI wire waveguides,” The Open Optics Journal2(1), 6–9 (2007).
[CrossRef]

Durfee, C. G.

Eleftheriades, G. V.

G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, “Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique,” IEEE Trans. Microw. Theory Tech.42(10), 1896–1903 (1994).
[CrossRef]

Elshaari, A.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” CLEO, paper CThAA2 (2011).

Fernandez, M.

Flammer, P. D.

Furtak, T. E.

Ghazisaidi, N.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NG-PONs),” IEEE Trans. Commun.59(5), 1378–1388 (2011).
[CrossRef]

Guan, X.

Halir, R.

He, S.

He, Y.

Hollingsworth, R. E.

Holmström, P.

J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express19(2), 838–847 (2011).
[CrossRef] [PubMed]

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron.39(4), 608–613 (2003).
[CrossRef]

Hsu, S.-H.

S.-H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” JOSA B.27(5), 941–947 (2010).
[CrossRef]

Hu, X. P.

Iso, M.

Janz, S.

Jinguji, K.

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Katehi, L. P. B.

G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, “Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique,” IEEE Trans. Microw. Theory Tech.42(10), 1896–1903 (1994).
[CrossRef]

Kawachi, M.

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

Kirendall, C. K.

C. K. Kirendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D: All. Phys.37(18), R197–R216 (2004).
[CrossRef]

Li, E.-P.

Li, T.

Lu, F. F.

Lu, H.

Maier, M.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NG-PONs),” IEEE Trans. Commun.59(5), 1378–1388 (2011).
[CrossRef]

Mashanovich, G. Z.

V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-insensitive directional couplers based on SOI wire waveguides,” The Open Optics Journal2(1), 6–9 (2007).
[CrossRef]

Meier, J.

Mojahedi, M.

Monux, A. O.

Novo, A. M.

Omar, A. S.

G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, “Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique,” IEEE Trans. Microw. Theory Tech.42(10), 1896–1903 (1994).
[CrossRef]

Passaro, V. M. N.

V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-insensitive directional couplers based on SOI wire waveguides,” The Open Optics Journal2(1), 6–9 (2007).
[CrossRef]

Perez, J. G. W.

Preble, S.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” CLEO, paper CThAA2 (2011).

Rebeiz, G. M.

G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, “Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique,” IEEE Trans. Microw. Theory Tech.42(10), 1896–1903 (1994).
[CrossRef]

Reed, G. T.

V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-insensitive directional couplers based on SOI wire waveguides,” The Open Optics Journal2(1), 6–9 (2007).
[CrossRef]

Reisslein, M.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NG-PONs),” IEEE Trans. Commun.59(5), 1378–1388 (2011).
[CrossRef]

Scheutzow, M.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NG-PONs),” IEEE Trans. Commun.59(5), 1378–1388 (2011).
[CrossRef]

Schmid, J. H.

Shi, Y.

Sun, X.

Takagi, A.

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

Thylen, L.

Thylén, L.

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron.39(4), 608–613 (2003).
[CrossRef]

Timotijevic, B.

V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-insensitive directional couplers based on SOI wire waveguides,” The Open Optics Journal2(1), 6–9 (2007).
[CrossRef]

Wagner, S. J.

Wang, J.

Wang, Z.

Wosinski, L.

Xu, D. X.

Yuan, Y.

Zhao, D.

Zhu, S. N.

Zhu, Y. Y.

Appl. Opt.

IEEE J. Quantum Electron.

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron.39(4), 608–613 (2003).
[CrossRef]

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymetric structure,” IEEE J. Quantum Electron.28(4), 848–855 (1992).
[CrossRef]

IEEE Trans. Commun.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NG-PONs),” IEEE Trans. Commun.59(5), 1378–1388 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, “Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique,” IEEE Trans. Microw. Theory Tech.42(10), 1896–1903 (1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D: All. Phys.

C. K. Kirendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D: All. Phys.37(18), R197–R216 (2004).
[CrossRef]

JOSA B.

S.-H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” JOSA B.27(5), 941–947 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

The Open Optics Journal

V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-insensitive directional couplers based on SOI wire waveguides,” The Open Optics Journal2(1), 6–9 (2007).
[CrossRef]

Other

http://www.nanofab.ualberta.ca/wp-content/uploads/2009/03/pecvd_process_control.pdf

FDTD Solutions Reference Guide, (Lumerical Solutions, 2012).

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” CLEO, paper CThAA2 (2011).

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Supermode propagation in low index medium,” CLEO (2007) paper JThD112 (2007).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 2007).

E. D. Palik, Handbook of optical constants of solids, (Academic Press, Inc. 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Top view of the broadband directional coupler (b) Cross section of the first and third silicon coupler sections. (c) Cross section of the second section. Positions of power monitors used in finite difference time domain (FDTD) simulation for calculating of power in the output waveguides are shown by dashed lines.

Fig. 2
Fig. 2

Guided power density profiles of the TM modes of the directional coupler at 1.55 µm. (a) Even (b) odd supermodes in the silicon waveguide section. (c) and (d) even and odd modes in the asymmetric hybrid section. The boundaries between different layers are shown by dashed lines.

Fig. 3
Fig. 3

Power transfer ratio for the broadband coupler calculated using full 3D FDTD (red) and the 2D approach (blue) as well as the coupling coefficient for a non-broadband coupler with the same waveguide dimensions (green).

Fig. 4
Fig. 4

Power transfer ratio of the broadband coupler when the dimensions are different from design specifications. (a) Effect of spacer height variation (b) Effect of waveguide width variation. All other dimensions are same as the final design described in section 3.

Fig. 5
Fig. 5

Power transfer ratio of the broadband coupler when gap width is increased by 30 nm from final design (dashed line) and after the adjustment of metal section length and spacer thickness (solid line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a Start = 1 2 ( 1 1 ); P M =( e i β + M L M 0 0 e i β M L M ); T 12 =( c 11 c 12 c 21 c 22 )
a End = P 3 T 12 T P 2 T 12 P 1 a Start

Metrics