Abstract

A novel concavely apodized (CA) distributed feedback (DFB) semiconductor laser was theoretically analyzed and experimentally demonstrated. The CA grating profile is equivalently realized by changing the duty cycle of the sampling structure along the cavity in the middle of which an equivalent phase shift is also inserted. Because the basic grating (seed grating) is uniform, only a common holographic exposure and a µm-level photolithography are required. Therefore, the fabrication cost is highly reduced compared with the true CA grating whose index modulation continuously changes along the cavity. The experimental results show that the laser has good single longitudinal mode operation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Longitudinal-mode behaviour of λ/4-shifted InGaAsP/InP DFB lasers,” Electron. Lett.21(9), 367–369 (1985).
    [CrossRef]
  2. M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
    [CrossRef]
  3. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
    [CrossRef]
  4. A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
    [CrossRef]
  5. J. Chen, R. J. Ram, and R. G. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE J. Quantum Electron.35(8), 1231–1237 (1999).
    [CrossRef]
  6. M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
    [CrossRef]
  7. G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
    [CrossRef]
  8. G. G. Morthier, K. David, P. Vankwikelberge, and R. G. E. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photon. Technol. Lett.2(6), 388–390 (1990).
    [CrossRef]
  9. G. G. Morthier and R. G. E. Baets, “Design of index-coupled DFB lasers with reduced longitudinal spatial hole burning,” J. Lightwave Technol.9(10), 1305–1313 (1991).
    [CrossRef]
  10. D. W. Wiesmann, C. David, R. Germann, D. Emi, and G.-L. Bona, “Apodized surface-corrugated gratings with varying duty cycle,” IEEE Photon. Technol. Lett.12(6), 639–641 (2000).
    [CrossRef]
  11. F. Girardin, G.-H. Duan, and T. Anna, “Modeling and measurement of spatial-hole-burning applied to amplitude modulated coupling distributed feedback lasers,” IEEE J. Quantum Electron.31(5), 834–841 (1995).
    [CrossRef]
  12. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009).
    [CrossRef] [PubMed]
  13. Y. Shi, X. Chen, Y. Zhou, S. Li, L. Lu, R. Liu, and Y. Feng, “Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift,” Opt. Lett.37(16), 3315–3317 (2012).
    [CrossRef] [PubMed]
  14. Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express20(16), 17374–17379 (2012).
    [CrossRef] [PubMed]
  15. Y. Shi, R. Gu, and X. Chen, “A concave tapered DFB semiconductor laser based on reconstruction-equivalent-chirp technology”, Photonics Global Conference (PGC), 9882 (2010).
    [CrossRef]
  16. Y. Shi, J. Li, L. Jia, S. Liu, and X. Chen, “An apodized DFB semiconductor laser realized by varying duty cycle of sampling Bragg grating and reconstruction-equivalent-chirp technology,” Opt. Commun.283(9), 1840–1844 (2010).
    [CrossRef]

2012

2010

Y. Shi, J. Li, L. Jia, S. Liu, and X. Chen, “An apodized DFB semiconductor laser realized by varying duty cycle of sampling Bragg grating and reconstruction-equivalent-chirp technology,” Opt. Commun.283(9), 1840–1844 (2010).
[CrossRef]

2009

2000

D. W. Wiesmann, C. David, R. Germann, D. Emi, and G.-L. Bona, “Apodized surface-corrugated gratings with varying duty cycle,” IEEE Photon. Technol. Lett.12(6), 639–641 (2000).
[CrossRef]

1999

J. Chen, R. J. Ram, and R. G. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE J. Quantum Electron.35(8), 1231–1237 (1999).
[CrossRef]

1995

F. Girardin, G.-H. Duan, and T. Anna, “Modeling and measurement of spatial-hole-burning applied to amplitude modulated coupling distributed feedback lasers,” IEEE J. Quantum Electron.31(5), 834–841 (1995).
[CrossRef]

1994

A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
[CrossRef]

1991

G. G. Morthier and R. G. E. Baets, “Design of index-coupled DFB lasers with reduced longitudinal spatial hole burning,” J. Lightwave Technol.9(10), 1305–1313 (1991).
[CrossRef]

1990

G. G. Morthier, K. David, P. Vankwikelberge, and R. G. E. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photon. Technol. Lett.2(6), 388–390 (1990).
[CrossRef]

1989

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

1988

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

1987

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

1985

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Longitudinal-mode behaviour of λ/4-shifted InGaAsP/InP DFB lasers,” Electron. Lett.21(9), 367–369 (1985).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

Akiba, S.

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Longitudinal-mode behaviour of λ/4-shifted InGaAsP/InP DFB lasers,” Electron. Lett.21(9), 367–369 (1985).
[CrossRef]

Anna, T.

F. Girardin, G.-H. Duan, and T. Anna, “Modeling and measurement of spatial-hole-burning applied to amplitude modulated coupling distributed feedback lasers,” IEEE J. Quantum Electron.31(5), 834–841 (1995).
[CrossRef]

Anthony, P. J.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

Armistead, C. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

Baets, R. G. E.

G. G. Morthier and R. G. E. Baets, “Design of index-coupled DFB lasers with reduced longitudinal spatial hole burning,” J. Lightwave Technol.9(10), 1305–1313 (1991).
[CrossRef]

G. G. Morthier, K. David, P. Vankwikelberge, and R. G. E. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photon. Technol. Lett.2(6), 388–390 (1990).
[CrossRef]

Bona, G.-L.

D. W. Wiesmann, C. David, R. Germann, D. Emi, and G.-L. Bona, “Apodized surface-corrugated gratings with varying duty cycle,” IEEE Photon. Technol. Lett.12(6), 639–641 (2000).
[CrossRef]

Chen, J.

J. Chen, R. J. Ram, and R. G. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE J. Quantum Electron.35(8), 1231–1237 (1999).
[CrossRef]

Chen, X.

Chinone, N.

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

Collar, A. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

Dai, Y.

David, C.

D. W. Wiesmann, C. David, R. Germann, D. Emi, and G.-L. Bona, “Apodized surface-corrugated gratings with varying duty cycle,” IEEE Photon. Technol. Lett.12(6), 639–641 (2000).
[CrossRef]

David, K.

G. G. Morthier, K. David, P. Vankwikelberge, and R. G. E. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photon. Technol. Lett.2(6), 388–390 (1990).
[CrossRef]

Duan, G.-H.

F. Girardin, G.-H. Duan, and T. Anna, “Modeling and measurement of spatial-hole-burning applied to amplitude modulated coupling distributed feedback lasers,” IEEE J. Quantum Electron.31(5), 834–841 (1995).
[CrossRef]

Emi, D.

D. W. Wiesmann, C. David, R. Germann, D. Emi, and G.-L. Bona, “Apodized surface-corrugated gratings with varying duty cycle,” IEEE Photon. Technol. Lett.12(6), 639–641 (2000).
[CrossRef]

Feng, Y.

Germann, R.

D. W. Wiesmann, C. David, R. Germann, D. Emi, and G.-L. Bona, “Apodized surface-corrugated gratings with varying duty cycle,” IEEE Photon. Technol. Lett.12(6), 639–641 (2000).
[CrossRef]

Geusic, J. E.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

Girardin, F.

F. Girardin, G.-H. Duan, and T. Anna, “Modeling and measurement of spatial-hole-burning applied to amplitude modulated coupling distributed feedback lasers,” IEEE J. Quantum Electron.31(5), 834–841 (1995).
[CrossRef]

Gu, R.

Y. Shi, R. Gu, and X. Chen, “A concave tapered DFB semiconductor laser based on reconstruction-equivalent-chirp technology”, Photonics Global Conference (PGC), 9882 (2010).
[CrossRef]

Harada, T.

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

Helkey, R. G.

J. Chen, R. J. Ram, and R. G. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE J. Quantum Electron.35(8), 1231–1237 (1999).
[CrossRef]

Jia, L.

Y. Shi, J. Li, L. Jia, S. Liu, and X. Chen, “An apodized DFB semiconductor laser realized by varying duty cycle of sampling Bragg grating and reconstruction-equivalent-chirp technology,” Opt. Commun.283(9), 1840–1844 (2010).
[CrossRef]

Li, J.

Y. Shi, J. Li, L. Jia, S. Liu, and X. Chen, “An apodized DFB semiconductor laser realized by varying duty cycle of sampling Bragg grating and reconstruction-equivalent-chirp technology,” Opt. Commun.283(9), 1840–1844 (2010).
[CrossRef]

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009).
[CrossRef] [PubMed]

Li, L.

Li, S.

Liu, R.

Liu, S.

Y. Shi, J. Li, L. Jia, S. Liu, and X. Chen, “An apodized DFB semiconductor laser realized by varying duty cycle of sampling Bragg grating and reconstruction-equivalent-chirp technology,” Opt. Commun.283(9), 1840–1844 (2010).
[CrossRef]

Lowery, A. J.

A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
[CrossRef]

Lu, L.

Lu, Y.

Matsushima, Y.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Longitudinal-mode behaviour of λ/4-shifted InGaAsP/InP DFB lasers,” Electron. Lett.21(9), 367–369 (1985).
[CrossRef]

Morthier, G. G.

G. G. Morthier and R. G. E. Baets, “Design of index-coupled DFB lasers with reduced longitudinal spatial hole burning,” J. Lightwave Technol.9(10), 1305–1313 (1991).
[CrossRef]

G. G. Morthier, K. David, P. Vankwikelberge, and R. G. E. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photon. Technol. Lett.2(6), 388–390 (1990).
[CrossRef]

Okai, M.

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

Olesen, H.

A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
[CrossRef]

Ram, R. J.

J. Chen, R. J. Ram, and R. G. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE J. Quantum Electron.35(8), 1231–1237 (1999).
[CrossRef]

Sakai, K.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Longitudinal-mode behaviour of λ/4-shifted InGaAsP/InP DFB lasers,” Electron. Lett.21(9), 367–369 (1985).
[CrossRef]

Shi, Y.

Taira, H.

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

Thompson, G. H. B.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

Usami, M.

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

Utaka, K.

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Longitudinal-mode behaviour of λ/4-shifted InGaAsP/InP DFB lasers,” Electron. Lett.21(9), 367–369 (1985).
[CrossRef]

Vankwikelberge, P.

G. G. Morthier, K. David, P. Vankwikelberge, and R. G. E. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photon. Technol. Lett.2(6), 388–390 (1990).
[CrossRef]

Wang, H.

Whiteaway, J. E. A.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

Wiesmann, D. W.

D. W. Wiesmann, C. David, R. Germann, D. Emi, and G.-L. Bona, “Apodized surface-corrugated gratings with varying duty cycle,” IEEE Photon. Technol. Lett.12(6), 639–641 (2000).
[CrossRef]

Yin, Z.

Zhou, Y.

Zhu, H.

Appl. Phys. Lett.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

Electron. Lett.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Longitudinal-mode behaviour of λ/4-shifted InGaAsP/InP DFB lasers,” Electron. Lett.21(9), 367–369 (1985).
[CrossRef]

A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
[CrossRef]

IEEE J. Quantum Electron.

J. Chen, R. J. Ram, and R. G. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE J. Quantum Electron.35(8), 1231–1237 (1999).
[CrossRef]

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

F. Girardin, G.-H. Duan, and T. Anna, “Modeling and measurement of spatial-hole-burning applied to amplitude modulated coupling distributed feedback lasers,” IEEE J. Quantum Electron.31(5), 834–841 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

G. G. Morthier, K. David, P. Vankwikelberge, and R. G. E. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photon. Technol. Lett.2(6), 388–390 (1990).
[CrossRef]

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

D. W. Wiesmann, C. David, R. Germann, D. Emi, and G.-L. Bona, “Apodized surface-corrugated gratings with varying duty cycle,” IEEE Photon. Technol. Lett.12(6), 639–641 (2000).
[CrossRef]

J. Lightwave Technol.

G. G. Morthier and R. G. E. Baets, “Design of index-coupled DFB lasers with reduced longitudinal spatial hole burning,” J. Lightwave Technol.9(10), 1305–1313 (1991).
[CrossRef]

Opt. Commun.

Y. Shi, J. Li, L. Jia, S. Liu, and X. Chen, “An apodized DFB semiconductor laser realized by varying duty cycle of sampling Bragg grating and reconstruction-equivalent-chirp technology,” Opt. Commun.283(9), 1840–1844 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Y. Shi, R. Gu, and X. Chen, “A concave tapered DFB semiconductor laser based on reconstruction-equivalent-chirp technology”, Photonics Global Conference (PGC), 9882 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) The schematic of the uniform sampling structure, (b) the one side apodized sampling structure by varying duty cycle.

Fig. 2
Fig. 2

The curve of |F ± 1| versus the duty cycle γ.

Fig. 3
Fig. 3

The light intensity distributions along the sampled grating with one side apodization and different Rapodization equal to 1.0, 0.5, 0.0 respectively.

Fig. 4
Fig. 4

The schematic of the symmetric concavely apodized sampled grating.

Fig. 5
Fig. 5

The diagram of Eq. (3) in the complex plane and m = −1.

Fig. 6
Fig. 6

(a) The reflective spectrum and the phase response of the one side apodized grating as shown in Fig. 1(b), (b) the transmission spectrum of the symmetric concavely apodized sampled grating. Here, Rapodization is 0.5.

Fig. 7
Fig. 7

(a) The simulated light intensity distributions along cavity around bias current of 70mA with the same output power of 14mW and Rapodization from 0.0 to 0.75, (b) the simulated lasing spectra with Rapodization equal to 0.0 and 0.5 respectively.

Fig. 8
Fig. 8

The measured P-I curve and V-I curve at temperature of 25°C. The insert is the microscope image of the fabricated DFB laser.

Fig. 9
Fig. 9

(a) The measured spectrum of the equivalent CA DFB laser at bias current of 100mA, (b) the measured SMSRs when bias current changes from 20mA to 100mA.

Fig. 10
Fig. 10

The measured spectrum of the equivalent CA DFB laser at bias current of 100mA and the lasing wavelength is 1554.6nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δn( z )= 1 2 Δ n s m F m exp[ j( 2π z Λ 0 +2mπ z P ) ]+c.c
| F ±1 |= sin( πγ ) π
Δ S m = 1 P 0 P s( z )exp( j 2mπz P ) dz= j 2mπ [ 1exp( j2mπγ ) ]

Metrics