Abstract

Imaging three-dimensional structures represents a major challenge for conventional microscopies. Here we describe a Spatial Light Modulator (SLM) microscope that can simultaneously address and image multiple targets in three dimensions. A wavefront coding element and computational image processing enables extended depth-of-field imaging. High-resolution, multi-site three-dimensional targeting and sensing is demonstrated in both transparent and scattering media over a depth range of 300-1,000 microns.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
    [CrossRef] [PubMed]
  2. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34(11), 1859–1866 (1995).
    [CrossRef] [PubMed]
  3. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
    [CrossRef] [PubMed]
  4. A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
    [CrossRef] [PubMed]
  5. D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
    [CrossRef] [PubMed]
  6. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
    [CrossRef] [PubMed]
  7. T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
    [CrossRef] [PubMed]
  8. W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
    [CrossRef] [PubMed]
  9. B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
    [CrossRef] [PubMed]
  10. A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
    [CrossRef] [PubMed]
  11. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
    [CrossRef] [PubMed]
  12. J. W. Y. Lit and R. Tremblay, “Focal depth of a transmitting axicon,” J. Opt. Soc. Am.63(4), 445–449 (1973).
    [CrossRef]
  13. G. Indebetouw and H. Bai, “Imaging with Fresnel zone pupil masks: extended depth of field,” Appl. Opt.23(23), 4299–4302 (1984).
    [CrossRef] [PubMed]
  14. H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
    [CrossRef] [PubMed]
  15. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett.26(12), 875–877 (2001).
    [CrossRef] [PubMed]
  16. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett.31(2), 181–183 (2006).
    [CrossRef] [PubMed]
  17. S. Bagheri, P. E. X. Silveira, R. Narayanswamy, and D. P. de Farias, “Analytical optical solution of the extension of the depth of field using cubic-phase wavefront coding. Part II. Design and optimization of the cubic phase,” J. Opt. Soc. Am. A25(5), 1064–1074 (2008).
    [CrossRef] [PubMed]
  18. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
    [CrossRef] [PubMed]
  19. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
    [CrossRef] [PubMed]
  20. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
    [CrossRef] [PubMed]
  21. V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
    [CrossRef] [PubMed]
  22. A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
    [CrossRef] [PubMed]
  23. F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
    [CrossRef] [PubMed]
  24. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  25. E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
    [CrossRef]
  26. W. J. Smith, Modern Optical Engineering, 3rd Ed. (McGraw-Hill, 2000).
  27. G. J. Swanson, “Binary Optics Technology: The theory and design of multi-level diffractive optical elements,” MIT/Lincoln Laboratories Technical Report 854 (1989).
  28. Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
    [CrossRef]
  29. M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
    [CrossRef]
  30. M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
    [CrossRef]
  31. S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
    [CrossRef]
  32. R. Piestun, Y. Y. Schechner, and J. Shamir, “Propagation-invariant wave fields with finite energy,” J. Opt. Soc. Am. A17(2), 294–303 (2000).
    [CrossRef] [PubMed]

2012 (4)

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

2011 (2)

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

2010 (2)

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

2009 (2)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
[CrossRef]

2008 (5)

S. Bagheri, P. E. X. Silveira, R. Narayanswamy, and D. P. de Farias, “Analytical optical solution of the extension of the depth of field using cubic-phase wavefront coding. Part II. Design and optimization of the cubic phase,” J. Opt. Soc. Am. A25(5), 1064–1074 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

2007 (2)

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (2)

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

2001 (2)

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett.26(12), 875–877 (2001).
[CrossRef] [PubMed]

2000 (1)

1995 (1)

1994 (2)

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

1993 (1)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1984 (1)

1973 (1)

Alivisatos, A. P.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

Anselmi, F.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

Arisaka, K.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Bagheri, S.

Bai, H.

Bègue, A.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Booth, M. J.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Botcherby, E. J.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Burns, D. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

Cathey, W. T.

Cheng, A.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Chi, W.

Chiovini, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Christodoulides, D. N.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Chun, M.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

Church, G. M.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

de Farias, D. P.

Deisseroth, K.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Demenikov, M.

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dowski, E. R.

Emiliani, V.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Engström, D.

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

George, N.

Göbel, W.

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

Goksör, M.

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

Golshani, P.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Gonçalves, J. T.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Greengard, A.

Greenspan, R. J.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

Grewe, B. F.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

Harvey, A. R.

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
[CrossRef]

Helmchen, F.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

Hillier, D.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Hirtz, J. J.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

Holekamp, T. F.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

Holy, T. E.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

Huber, D.

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

Huisken, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Indebetouw, G.

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Juškaitis, R.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Kampa, B. M.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

Kao, H. P.

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Kasper, H.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

Kaszás, A.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Katona, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Keller, M.

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Langer, D.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

Lit, J. W. Y.

Lu, G.

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

Maák, P.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Mosk, A. P.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

Narayanswamy, R.

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Ogden, D.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Packer, A. M.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

Pauca, V. P.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Persson, M.

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

Peterka, D. S.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

Piestun, R.

Plemmons, R. J.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Portera-Cailliau, C.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Poskanzer, K. E.

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Prakash, R.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

Prasad, S.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Robert, D.

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

Roska, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Roukes, M. L.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

Rózsa, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Schechner, Y. Y.

Shamir, J.

Silveira, P. E. X.

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Spelman, F. A.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

Stelzer, E. H. K.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Szalay, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Torgersen, T. C.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Tremblay, R.

Turaga, D.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

van der Gracht, J.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

Ventalon, C.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Veress, M.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Verkman, A. S.

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Vizi, E. S.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Voie, A. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wilson, T.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

Yu, F.

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

Yuste, R.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Zhang, Z.

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

Appl. Opt. (2)

Biophys. J. (1)

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Front Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

J. Microsc. (2)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nat. Methods (7)

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Neuron (2)

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Opt. Eng. (1)

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Proc. SPIE (3)

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
[CrossRef]

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Science (3)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Other (2)

W. J. Smith, Modern Optical Engineering, 3rd Ed. (McGraw-Hill, 2000).

G. J. Swanson, “Binary Optics Technology: The theory and design of multi-level diffractive optical elements,” MIT/Lincoln Laboratories Technical Report 854 (1989).

Supplementary Material (3)

» Media 1: AVI (3590 KB)     
» Media 2: AVI (13604 KB)     
» Media 3: AVI (6718 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics