Abstract

We report on Terahertz quantum cascade lasers with tapered waveguide structure operating at ∼ 103 μm. The tapered waveguide effect on the output power and the laser beam divergence are experimentally studied with the tapered angle ranging from 0° to 8°. It is found that the peak output power of the devices with same length reaches the maximum at about 5° ∼6° tapered angle. Meanwhile, the horizontal divergence angle of the laser beam can be greatly reduced. The existence of such optimal tapered angle is explained by the finite-element simulation with the consideration of the self-focusing effect for the devices with larger tapered angle.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
    [CrossRef] [PubMed]
  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
    [CrossRef] [PubMed]
  3. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1, 517–525 (2007).
    [CrossRef]
  4. C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
    [CrossRef]
  5. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Optical and Quantum Electronics28623–645 (1996).
    [CrossRef]
  6. C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006).
    [CrossRef]
  7. H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
    [CrossRef]
  8. D. Vijayakumar, O. B. Jensen, R. Ostendorf, T. Westphalen, and B. Thestrup, “Spectral beam combining of a 980 nm tapered diode laser bar,” Opt. Express18(2), 893–898 (2010).
    [CrossRef] [PubMed]
  9. L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett.91, 181122 (2007).
    [CrossRef]
  10. S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator poweramplifier with 1.5 W output power at 300 K,” Opt. Express19, 16229–16235 (2011).
    [CrossRef] [PubMed]
  11. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
    [CrossRef] [PubMed]
  12. P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
    [CrossRef]
  13. J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012).
    [CrossRef]
  14. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137, A801–A818 (1965).
    [CrossRef]
  15. C. C. Wang, “Length-dependent threshold for stimulated Raman effect and self-focusing of laser beams in liquids,” Phys. Rev. Lett.16, 344–346 (1966).
    [CrossRef]
  16. J. Wang, W. D. Wu, X. L. Zhang, and S. Q. Duan, “Analysis of terahertz quantum cascade laser beam,” Information and Electronic Engineering9, 365–368 (2011).
  17. A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun.202, 17–20 (2002).
    [CrossRef]
  18. S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
    [CrossRef]

2012 (3)

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

2011 (2)

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator poweramplifier with 1.5 W output power at 300 K,” Opt. Express19, 16229–16235 (2011).
[CrossRef] [PubMed]

J. Wang, W. D. Wu, X. L. Zhang, and S. Q. Duan, “Analysis of terahertz quantum cascade laser beam,” Information and Electronic Engineering9, 365–368 (2011).

2010 (1)

2008 (1)

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

2007 (3)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1, 517–525 (2007).
[CrossRef]

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett.91, 181122 (2007).
[CrossRef]

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

2006 (1)

C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006).
[CrossRef]

2002 (2)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun.202, 17–20 (2002).
[CrossRef]

2000 (1)

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

1996 (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Optical and Quantum Electronics28623–645 (1996).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
[CrossRef] [PubMed]

1966 (1)

C. C. Wang, “Length-dependent threshold for stimulated Raman effect and self-focusing of laser beams in liquids,” Phys. Rev. Lett.16, 344–346 (1966).
[CrossRef]

1965 (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137, A801–A818 (1965).
[CrossRef]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Bewley, W. W.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Bonnefont, S.

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

Botez, D.

J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012).
[CrossRef]

Braunstein, J.

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

Brox, O.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Bugge, F.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Canedy, C. L.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Capasso, F.

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator poweramplifier with 1.5 W output power at 300 K,” Opt. Express19, 16229–16235 (2011).
[CrossRef] [PubMed]

J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
[CrossRef] [PubMed]

Chang, C.-C.

J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012).
[CrossRef]

Cho, A. Y.

J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
[CrossRef] [PubMed]

Ciattoni, A.

A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun.202, 17–20 (2002).
[CrossRef]

Crosignani, B.

A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun.202, 17–20 (2002).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Diehl, L.

Duan, S. Q.

J. Wang, W. D. Wu, X. L. Zhang, and S. Q. Duan, “Analysis of terahertz quantum cascade laser beam,” Information and Electronic Engineering9, 365–368 (2011).

Earles, T.

J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012).
[CrossRef]

Eichhorn, M.

C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006).
[CrossRef]

Erbert, G.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Faist, J.

J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
[CrossRef] [PubMed]

Forchel, A.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett.91, 181122 (2007).
[CrossRef]

Fricke, J.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Ginolas, A.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Go, R.

Gökden, B.

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

Goyal, A.

Goyal, A.K.

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

Höfling, S.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett.91, 181122 (2007).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
[CrossRef] [PubMed]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Jensen, O. B.

Kaiser, W.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett.91, 181122 (2007).
[CrossRef]

Keleman, M. T.

C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006).
[CrossRef]

Kim, C. S.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Kim, M.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Kirch, J.D.

J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012).
[CrossRef]

Knauer, A.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Kumar, C.

Larrabee, D. C.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Lindle, J. R.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Lozes, F.

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

Lyakh, A.

Maker, P. D.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137, A801–A818 (1965).
[CrossRef]

Mariojouls, S.

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

Maulini, R.

Mawst, L.J.

J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012).
[CrossRef]

Menzel, S.

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator poweramplifier with 1.5 W output power at 300 K,” Opt. Express19, 16229–16235 (2011).
[CrossRef] [PubMed]

Meyer, J. R.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Mikulla, M.

C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006).
[CrossRef]

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

Morgott, S.

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

Nähle, L.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett.91, 181122 (2007).
[CrossRef]

Nolde, J. A.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Ostendorf, R.

Paschke, K.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Patel, N.

Pfahler, C.

C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006).
[CrossRef]

Pflügl, C.

Porto, P. D.

A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun.202, 17–20 (2002).
[CrossRef]

Rauter, P.

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

Ressel, P.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Sanchez, A.

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator poweramplifier with 1.5 W output power at 300 K,” Opt. Express19, 16229–16235 (2011).
[CrossRef] [PubMed]

SChflitt, A.

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

Schmitz, J.

C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006).
[CrossRef]

Semmel, J.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett.91, 181122 (2007).
[CrossRef]

Shin, J.C.

J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco,

J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
[CrossRef] [PubMed]

Terhune, R. W.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137, A801–A818 (1965).
[CrossRef]

Thestrup, B.

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Tsekoun, A.

Turner, G.

Turner, G.W.

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

Vijayakumar, D.

Vurgaftman, I.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

Wagner, J.

C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006).
[CrossRef]

Walpole, J. N.

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Optical and Quantum Electronics28623–645 (1996).
[CrossRef]

Wang, C.

Wang, C. C.

C. C. Wang, “Length-dependent threshold for stimulated Raman effect and self-focusing of laser beams in liquids,” Phys. Rev. Lett.16, 344–346 (1966).
[CrossRef]

Wang, C.A.

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

Wang, J.

J. Wang, W. D. Wu, X. L. Zhang, and S. Q. Duan, “Analysis of terahertz quantum cascade laser beam,” Information and Electronic Engineering9, 365–368 (2011).

Weimann, G.

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

Wenzel, H.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Westphalen, T.

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1, 517–525 (2007).
[CrossRef]

Wu, W. D.

J. Wang, W. D. Wu, X. L. Zhang, and S. Q. Duan, “Analysis of terahertz quantum cascade laser beam,” Information and Electronic Engineering9, 365–368 (2011).

Zhang, X. L.

J. Wang, W. D. Wu, X. L. Zhang, and S. Q. Duan, “Analysis of terahertz quantum cascade laser beam,” Information and Electronic Engineering9, 365–368 (2011).

Appl. Phys. Lett (1)

P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008).
[CrossRef]

C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006).
[CrossRef]

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett.91, 181122 (2007).
[CrossRef]

Electron. Lett. (2)

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012).
[CrossRef]

Information and Electronic Engineering (1)

J. Wang, W. D. Wu, X. L. Zhang, and S. Q. Duan, “Analysis of terahertz quantum cascade laser beam,” Information and Electronic Engineering9, 365–368 (2011).

Nat. Photonics (1)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1, 517–525 (2007).
[CrossRef]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun.202, 17–20 (2002).
[CrossRef]

Opt. Express (3)

Optical and Quantum Electronics (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Optical and Quantum Electronics28623–645 (1996).
[CrossRef]

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137, A801–A818 (1965).
[CrossRef]

Phys. Rev. Lett. (1)

C. C. Wang, “Length-dependent threshold for stimulated Raman effect and self-focusing of laser beams in liquids,” Phys. Rev. Lett.16, 344–346 (1966).
[CrossRef]

Proc. SPIE (1)

S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000).
[CrossRef]

Science (1)

J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cross-sectional schematic of the tapered THz QCL, inset: zoom in of the 25 μm-wide Ge/Au/Ni/Au ohmic contact layer and 20 μm-wide uncovered area. (b)the SEM image of the tapered THz QCL with tapered angles equal to 0°, 3°, 5° and 8°.

Fig. 2
Fig. 2

(a) Voltage and output power as a function of current at different heat sink temperatures for the 5°-tapered device. (b) Output powers versus current density at 10K of the tapered THz QCL with a total length of 2.5 mm and tapered angles 0°, 3°, 5° and 8° (measured width of output facets corresponding to 103 μm, 210 μm, 275 μm, and 375 μm, respectively). The inset shows the emission spectrum of the 5°-tapered device.

Fig. 3
Fig. 3

Peak output power versus tapered angle of the devices with Ltapered equals to 1.0 mm, 1.3 mm, 2.0 mm and 2.42 mm. The scatters are the experimental data and the lines are curve fitting data.

Fig. 4
Fig. 4

The measured normalized intensity (°) of laser beam in the x direction of the tapered THz QCL with tapered angle equals to 0°, 5° and 8°, respectively. The ridged and tapered region lengths are 0.5 mm and 2.0 mm, respectively. The theoretically simulated results with the finite-element method are also presented with the solid lines. Inset: the division of the tapered region of the device within the simulation.

Tables (1)

Tables Icon

Table 1 The measured and theoretically simulated full width at half maximum (FWHM) angle of the horizontal far field laser beam of the tapered THz QCL with tapered angle equals to 0°, 3°, 5° and 8°. The ridged and tapered region lengths are 0.5 mm and 2.0 mm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E x ( x , y , z ) = 1 2 π E x ( x , y , 0 ) z ( e i k R R ) d x d y E y ( x , y , z ) = 1 2 π E y ( x , y , 0 ) z ( e i k R R ) d x d y E z ( x , y , z ) = 1 2 π [ E x ( x , y , 0 ) x ( e i k R R ) + E y ( x , y , 0 ) y ( e i k R R ) ] d x d y
n = 3.5639 * [ 1 + Δ n 1 e ( | x | / x 0 ) ] 0.03 i * [ 1 + Δ n 2 e ( | x | / x 0 ) ] ,

Metrics