Abstract

Within this paper a novel method for selecting certain lasing modes from a whispering gallery mode (WGM) spectrum of electrically pumped microrings is presented. Selection is achieved by introducing sub-wavelength sized notches of about 50nm width and 500nm depth to the sidewalls of ring shaped quantum dot micro cavities with 80µm diameter and ridge widths below 2µm. It is shown that the notches act as scattering centers, suppressing modes that have maxima in intensity at the notch position. By a variation of the angle between the notches, different repetitive patterns of lasing modes and suppressed modes are conceivable.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots, P. Michler, ed. (Springer, Berlin, 2003).
  2. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
    [CrossRef] [PubMed]
  3. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express16(7), 4848–4857 (2008).
    [CrossRef] [PubMed]
  4. T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
    [CrossRef]
  5. C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, and A. Forchel, “Resonantly probing micropillar cavity modes by photocurrent spectroscopy,” Appl. Phys. Lett.94(22), 221103 (2009).
    [CrossRef]
  6. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
    [CrossRef]
  7. F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
    [CrossRef]
  8. M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
    [CrossRef]
  9. T. Krauss, P. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electron. Lett.26(25), 2095–2097 (1990).
    [CrossRef]
  10. S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74(2), 176–178 (1999).
    [CrossRef]
  11. R. Krebs, S. Deubert, J. P. Reithmaier, and A. Forchel, “Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3µm,” J. Cryst. Growth251(1-4), 742–747 (2003).
    [CrossRef]
  12. S. A. Backes, J. R. A. Cleaver, A. P. Heberle, and K. Köhler, “Microdisk laser structures for mode control and directional emission,” J. Vac. Sci. Technol. B16(6), 3817–3820 (1998).
    [CrossRef]
  13. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett.80(12), 2051–2053 (2002).
    [CrossRef]
  14. A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett.99(9), 091105 (2011).
    [CrossRef]
  15. S. Furst, S. Yu, and M. Sorel, “Fast and digitally wavelength-tunable semiconductor ring laser using a monolithically integrated distributed Bragg reflector,” IEEE Photon. Technol. Lett.20(23), 1926–1928 (2008).
    [CrossRef]
  16. I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
    [CrossRef]
  17. F. Mandorlo, P. R. Romeo, N. Olivier, L. Ferrier, R. Orobtchouk, X. Letartre, J. M. Fedeli, and P. Viktorovitch, “Controlled Multi-Wavelength Emission in Full CMOS Compatible Micro-Lasers for on Chip Interconnections,” J. Lightwave Technol.30(19), 3073–3080 (2012).
    [CrossRef]
  18. A. Andronico, J. Claudon, J.-M. Gérard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett.33(21), 2416–2418 (2008).
    [CrossRef] [PubMed]
  19. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 52–58 (2006).
    [CrossRef]
  20. B. D. Jones, M. Oxborrow, V. N. Astratov, M. Hopkinson, A. Tahraoui, M. S. Skolnick, and A. M. Fox, “Splitting and lasing of whispering gallery modes in quantum dot micropillars,” Opt. Express18(21), 22578–22592 (2010).
    [CrossRef] [PubMed]
  21. X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
    [CrossRef]
  22. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A, Pure Appl. Opt.5(1), 53–60 (2003).
    [CrossRef]
  23. J. Wiersig, “Perturbative approach to optical microdisks with a local boundary deformation,” Phys. Rev. A85(6), 063838 (2012).
    [CrossRef]

2012 (5)

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

J. Wiersig, “Perturbative approach to optical microdisks with a local boundary deformation,” Phys. Rev. A85(6), 063838 (2012).
[CrossRef]

F. Mandorlo, P. R. Romeo, N. Olivier, L. Ferrier, R. Orobtchouk, X. Letartre, J. M. Fedeli, and P. Viktorovitch, “Controlled Multi-Wavelength Emission in Full CMOS Compatible Micro-Lasers for on Chip Interconnections,” J. Lightwave Technol.30(19), 3073–3080 (2012).
[CrossRef]

2011 (2)

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett.99(9), 091105 (2011).
[CrossRef]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
[CrossRef]

2010 (2)

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

B. D. Jones, M. Oxborrow, V. N. Astratov, M. Hopkinson, A. Tahraoui, M. S. Skolnick, and A. M. Fox, “Splitting and lasing of whispering gallery modes in quantum dot micropillars,” Opt. Express18(21), 22578–22592 (2010).
[CrossRef] [PubMed]

2009 (1)

C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, and A. Forchel, “Resonantly probing micropillar cavity modes by photocurrent spectroscopy,” Appl. Phys. Lett.94(22), 221103 (2009).
[CrossRef]

2008 (3)

2006 (1)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 52–58 (2006).
[CrossRef]

2004 (1)

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

2003 (2)

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A, Pure Appl. Opt.5(1), 53–60 (2003).
[CrossRef]

R. Krebs, S. Deubert, J. P. Reithmaier, and A. Forchel, “Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3µm,” J. Cryst. Growth251(1-4), 742–747 (2003).
[CrossRef]

2002 (1)

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett.80(12), 2051–2053 (2002).
[CrossRef]

1999 (1)

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74(2), 176–178 (1999).
[CrossRef]

1998 (1)

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, and K. Köhler, “Microdisk laser structures for mode control and directional emission,” J. Vac. Sci. Technol. B16(6), 3817–3820 (1998).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

1990 (1)

T. Krauss, P. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electron. Lett.26(25), 2095–2097 (1990).
[CrossRef]

Albert, F.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

Andronico, A.

Arbabi, A.

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett.99(9), 091105 (2011).
[CrossRef]

Ashour, M.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

Astratov, V. N.

Baba, T.

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett.80(12), 2051–2053 (2002).
[CrossRef]

Backes, S. A.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74(2), 176–178 (1999).
[CrossRef]

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, and K. Köhler, “Microdisk laser structures for mode control and directional emission,” J. Vac. Sci. Technol. B16(6), 3817–3820 (1998).
[CrossRef]

Baumberg, J. J.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74(2), 176–178 (1999).
[CrossRef]

Bazhenov, A.

Benson, T. M.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 52–58 (2006).
[CrossRef]

Berger, V.

Beri, S.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

Böckler, C.

Bolk, J.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

Boriskina, S. V.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 52–58 (2006).
[CrossRef]

Braun, T.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

Chen, Y.-L.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
[CrossRef]

Chow, E.

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett.99(9), 091105 (2011).
[CrossRef]

Claudon, J.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

A. Andronico, J. Claudon, J.-M. Gérard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett.33(21), 2416–2418 (2008).
[CrossRef] [PubMed]

Cleaver, J. R. A.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74(2), 176–178 (1999).
[CrossRef]

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, and K. Köhler, “Microdisk laser structures for mode control and directional emission,” J. Vac. Sci. Technol. B16(6), 3817–3820 (1998).
[CrossRef]

Danckaert, J.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

Deubert, S.

R. Krebs, S. Deubert, J. P. Reithmaier, and A. Forchel, “Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3µm,” J. Cryst. Growth251(1-4), 742–747 (2003).
[CrossRef]

Docter, B.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

Eichfelder, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Ermakov, I. V.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

Fedeli, J. M.

Ferrier, L.

Forchel, A.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, and A. Forchel, “Resonantly probing micropillar cavity modes by photocurrent spectroscopy,” Appl. Phys. Lett.94(22), 221103 (2009).
[CrossRef]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express16(7), 4848–4857 (2008).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

R. Krebs, S. Deubert, J. P. Reithmaier, and A. Forchel, “Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3µm,” J. Cryst. Growth251(1-4), 742–747 (2003).
[CrossRef]

Fox, A. M.

Fujita, M.

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett.80(12), 2051–2053 (2002).
[CrossRef]

Furst, S.

S. Furst, S. Yu, and M. Sorel, “Fast and digitally wavelength-tunable semiconductor ring laser using a monolithically integrated distributed Bragg reflector,” IEEE Photon. Technol. Lett.20(23), 1926–1928 (2008).
[CrossRef]

Fürst, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Gérard, J.-M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

A. Andronico, J. Claudon, J.-M. Gérard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett.33(21), 2416–2418 (2008).
[CrossRef] [PubMed]

Gilbert, K.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Goddard, L. L.

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett.99(9), 091105 (2011).
[CrossRef]

Gong, Q.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
[CrossRef]

Gorbunov, A.

Grosse, P.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Hargart, F.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Heberle, A. P.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74(2), 176–178 (1999).
[CrossRef]

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, and K. Köhler, “Microdisk laser structures for mode control and directional emission,” J. Vac. Sci. Technol. B16(6), 3817–3820 (1998).
[CrossRef]

Heindel, T.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

Höfling, S.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, and A. Forchel, “Resonantly probing micropillar cavity modes by photocurrent spectroscopy,” Appl. Phys. Lett.94(22), 221103 (2009).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Hopkinson, M.

Jetter, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Jones, B. D.

Kamp, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express16(7), 4848–4857 (2008).
[CrossRef] [PubMed]

Kang, Y. M.

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett.99(9), 091105 (2011).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kessler, C. A.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Kistner, C.

C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, and A. Forchel, “Resonantly probing micropillar cavity modes by photocurrent spectroscopy,” Appl. Phys. Lett.94(22), 221103 (2009).
[CrossRef]

Köhler, K.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74(2), 176–178 (1999).
[CrossRef]

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, and K. Köhler, “Microdisk laser structures for mode control and directional emission,” J. Vac. Sci. Technol. B16(6), 3817–3820 (1998).
[CrossRef]

Krauss, T.

T. Krauss, P. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electron. Lett.26(25), 2095–2097 (1990).
[CrossRef]

Krebs, R.

R. Krebs, S. Deubert, J. P. Reithmaier, and A. Forchel, “Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3µm,” J. Cryst. Growth251(1-4), 742–747 (2003).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express16(7), 4848–4857 (2008).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Langer, F.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Laybourn, P.

T. Krauss, P. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electron. Lett.26(25), 2095–2097 (1990).
[CrossRef]

Leijtens, X. J. M.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

Leo, G.

Lermer, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Letartre, X.

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Li, B.-B.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
[CrossRef]

Li, Y.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
[CrossRef]

Liu, Y.-C.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
[CrossRef]

Löffler, A.

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express16(7), 4848–4857 (2008).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Lu, C.-Y.

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett.99(9), 091105 (2011).
[CrossRef]

Malik, N. S.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Mandorlo, F.

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Michler, P.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Munsch, M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Nauerth, S.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Nosich, A. I.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 52–58 (2006).
[CrossRef]

Olivier, N.

Orobtchouk, R.

Oxborrow, M.

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Pieczarka, M. M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Rau, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

R. Krebs, S. Deubert, J. P. Reithmaier, and A. Forchel, “Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3µm,” J. Cryst. Growth251(1-4), 742–747 (2003).
[CrossRef]

Reitzenstein, S.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, and A. Forchel, “Resonantly probing micropillar cavity modes by photocurrent spectroscopy,” Appl. Phys. Lett.94(22), 221103 (2009).
[CrossRef]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express16(7), 4848–4857 (2008).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Roberts, J.

T. Krauss, P. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electron. Lett.26(25), 2095–2097 (1990).
[CrossRef]

Romeo, P. R.

Roßbach, R.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Schlereth, T.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Schneider, C.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, and A. Forchel, “Resonantly probing micropillar cavity modes by photocurrent spectroscopy,” Appl. Phys. Lett.94(22), 221103 (2009).
[CrossRef]

Schulz, W.-M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Sewell, P.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 52–58 (2006).
[CrossRef]

Skolnick, M. S.

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Sorel, M.

S. Furst, S. Yu, and M. Sorel, “Fast and digitally wavelength-tunable semiconductor ring laser using a monolithically integrated distributed Bragg reflector,” IEEE Photon. Technol. Lett.20(23), 1926–1928 (2008).
[CrossRef]

Tahraoui, A.

Verschaffelt, G.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

Viktorovitch, P.

Weier, H.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Weinfurter, H.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Wiersig, J.

J. Wiersig, “Perturbative approach to optical microdisks with a local boundary deformation,” Phys. Rev. A85(6), 063838 (2012).
[CrossRef]

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A, Pure Appl. Opt.5(1), 53–60 (2003).
[CrossRef]

Worschech, L.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

Xiao, Y.-F.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
[CrossRef]

Yi, X.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
[CrossRef]

Yu, S.

S. Furst, S. Yu, and M. Sorel, “Fast and digitally wavelength-tunable semiconductor ring laser using a monolithically integrated distributed Bragg reflector,” IEEE Photon. Technol. Lett.20(23), 1926–1928 (2008).
[CrossRef]

Appl. Phys. Lett. (7)

C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, and A. Forchel, “Resonantly probing micropillar cavity modes by photocurrent spectroscopy,” Appl. Phys. Lett.94(22), 221103 (2009).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010).
[CrossRef]

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74(2), 176–178 (1999).
[CrossRef]

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett.80(12), 2051–2053 (2002).
[CrossRef]

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett.99(9), 091105 (2011).
[CrossRef]

Electron. Lett. (1)

T. Krauss, P. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electron. Lett.26(25), 2095–2097 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 52–58 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Furst, S. Yu, and M. Sorel, “Fast and digitally wavelength-tunable semiconductor ring laser using a monolithically integrated distributed Bragg reflector,” IEEE Photon. Technol. Lett.20(23), 1926–1928 (2008).
[CrossRef]

J. Cryst. Growth (1)

R. Krebs, S. Deubert, J. P. Reithmaier, and A. Forchel, “Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3µm,” J. Cryst. Growth251(1-4), 742–747 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A, Pure Appl. Opt.5(1), 53–60 (2003).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, and K. Köhler, “Microdisk laser structures for mode control and directional emission,” J. Vac. Sci. Technol. B16(6), 3817–3820 (1998).
[CrossRef]

Nature (1)

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004).
[CrossRef] [PubMed]

New J. Phys. (1)

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011).
[CrossRef]

J. Wiersig, “Perturbative approach to optical microdisks with a local boundary deformation,” Phys. Rev. A85(6), 063838 (2012).
[CrossRef]

Other (1)

J.-M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots, P. Michler, ed. (Springer, Berlin, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic mode distribution for notched rings with 90° offset angle. Does not account for influences of notches to propagation of the modes. (a) m = 18. (b) m = 19. (c) m = 20.

Fig. 2
Fig. 2

Simulated mode distributions for TE1,1,18 (a, d), TE1,1,19 (b, e) and TE1,1,20 (c, f) modes of an orthogonally notched ring with positive (upper row) and negative parity (lower row).

Fig. 3
Fig. 3

SEM images. (a) Total view of a ring with 80 µm outer diameter. (b) Close-up of a notch.

Fig. 4
Fig. 4

Output power characteristic of a ring with 78µm inner and 80µm outer diameter. Two 50/500nm notches are placed under an angle of 90°.

Fig. 5
Fig. 5

Comparison of room temperature spectra of 80µm outer diameter rings with different notch symmetries taken at 10mA injection current. The dashed red lines are guides to the eye, indicating selected modes. (a) Unnotched reference spectrum. (b) Two notches with 90° offset angle. (c) Two notches with 60° offset angle. (d) Three notches with 45° offset angle.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FS R eff =FSR 180° φ

Metrics