Abstract

We report an experimental design for two-dimensional electronic spectroscopy (2D-ES) that avoids the need to measure notoriously weak pump-probe spectra. Retaining a fully non-collinear folded boxcar geometry, the described layout replaces pump-probe with heterodyned transient grating (het-TG). The absorptive component of the het-TG signal is measured directly, following a straightforward optimization routine. The use of het-TG achieves an improvement in signal to noise ratio by almost two orders of magnitude. As a result, 2D-ES-signals down to 0.5% can be clearly resolved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
    [CrossRef] [PubMed]
  2. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434(7033), 625–628 (2005).
    [CrossRef] [PubMed]
  3. K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324(5931), 1169–1173 (2009).
    [CrossRef] [PubMed]
  4. J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
    [CrossRef] [PubMed]
  5. T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
    [CrossRef]
  6. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett.386(1-3), 184–189 (2004).
    [CrossRef]
  7. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett.23(17), 1378–1380 (1998).
    [CrossRef] [PubMed]
  8. T. H. Zhang, C. N. Borca, X. Q. Li, and S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express13(19), 7432–7441 (2005).
    [CrossRef] [PubMed]
  9. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett.33(23), 2851–2853 (2008).
    [CrossRef] [PubMed]
  10. P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
    [CrossRef] [PubMed]
  11. S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
    [CrossRef] [PubMed]
  12. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express16(22), 17420–17428 (2008).
    [CrossRef] [PubMed]
  13. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” (Invited) Rev. Sci. Instrum.82(8), 081301 (2011).
    [CrossRef] [PubMed]
  14. D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
    [CrossRef] [PubMed]
  15. N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
    [CrossRef]
  16. D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H. F. Kauffmann, “Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy,” Phys. Rev. Lett.108(6), 067401 (2012).
    [CrossRef] [PubMed]
  17. M. Khalil, N. Demirdöven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett.90(4), 047401 (2003).
    [CrossRef] [PubMed]
  18. W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem.43(1), 497–523 (1992).
    [CrossRef] [PubMed]
  19. J. Piel, E. Riedle, L. Gundlach, R. Ernstorfer, and R. Eichberger, “Sub-20 fs visible pulses with 750 nJ energy from a 100 kHz noncollinear optical parametric amplifier,” Opt. Lett.31(9), 1289–1291 (2006).
    [CrossRef] [PubMed]
  20. A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett.34(21), 3301–3303 (2009).
    [CrossRef] [PubMed]
  21. T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys.121(9), 4221–4236 (2004).
    [CrossRef] [PubMed]
  22. P. M. Donaldson, H. Strzalka, and P. Hamm, “High sensitivity transient infrared spectroscopy: a UV/Visible transient grating spectrometer with a heterodyne detected infrared probe,” Opt. Express20(12), 12761–12770 (2012).
    [CrossRef] [PubMed]
  23. J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B106(40), 10460–10467 (2002).
    [CrossRef]
  24. F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
    [CrossRef] [PubMed]
  25. B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional Fourier transform spectra of multilevel systems,” J. Phys. Chem. A113(47), 13287–13299 (2009).
    [CrossRef] [PubMed]

2013

F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
[CrossRef] [PubMed]

2012

D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H. F. Kauffmann, “Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy,” Phys. Rev. Lett.108(6), 067401 (2012).
[CrossRef] [PubMed]

T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
[CrossRef]

P. M. Donaldson, H. Strzalka, and P. Hamm, “High sensitivity transient infrared spectroscopy: a UV/Visible transient grating spectrometer with a heterodyne detected infrared probe,” Opt. Express20(12), 12761–12770 (2012).
[CrossRef] [PubMed]

2011

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” (Invited) Rev. Sci. Instrum.82(8), 081301 (2011).
[CrossRef] [PubMed]

2010

D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
[CrossRef] [PubMed]

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

2009

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324(5931), 1169–1173 (2009).
[CrossRef] [PubMed]

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
[CrossRef] [PubMed]

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional Fourier transform spectra of multilevel systems,” J. Phys. Chem. A113(47), 13287–13299 (2009).
[CrossRef] [PubMed]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett.34(21), 3301–3303 (2009).
[CrossRef] [PubMed]

2008

2006

2005

T. H. Zhang, C. N. Borca, X. Q. Li, and S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express13(19), 7432–7441 (2005).
[CrossRef] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434(7033), 625–628 (2005).
[CrossRef] [PubMed]

2004

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett.386(1-3), 184–189 (2004).
[CrossRef]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys.121(9), 4221–4236 (2004).
[CrossRef] [PubMed]

2003

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett.90(4), 047401 (2003).
[CrossRef] [PubMed]

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

2002

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B106(40), 10460–10467 (2002).
[CrossRef]

1998

1992

W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem.43(1), 497–523 (1992).
[CrossRef] [PubMed]

Abramavicius, D.

D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H. F. Kauffmann, “Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy,” Phys. Rev. Lett.108(6), 067401 (2012).
[CrossRef] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

Bixner, O.

F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
[CrossRef] [PubMed]

T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
[CrossRef]

Blankenship, R. E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434(7033), 625–628 (2005).
[CrossRef] [PubMed]

Borca, C. N.

Bristow, A. D.

D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
[CrossRef] [PubMed]

Brixner, T.

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett.33(23), 2851–2853 (2008).
[CrossRef] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434(7033), 625–628 (2005).
[CrossRef] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys.121(9), 4221–4236 (2004).
[CrossRef] [PubMed]

Cho, B.

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional Fourier transform spectra of multilevel systems,” J. Phys. Chem. A113(47), 13287–13299 (2009).
[CrossRef] [PubMed]

Cho, M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434(7033), 625–628 (2005).
[CrossRef] [PubMed]

Christensson, N.

T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
[CrossRef]

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett.386(1-3), 184–189 (2004).
[CrossRef]

Crimmins, T. F.

Cundiff, S. T.

D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
[CrossRef] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324(5931), 1169–1173 (2009).
[CrossRef] [PubMed]

T. H. Zhang, C. N. Borca, X. Q. Li, and S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express13(19), 7432–7441 (2005).
[CrossRef] [PubMed]

Dadusc, G.

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B106(40), 10460–10467 (2002).
[CrossRef]

Dai, X. C.

D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
[CrossRef] [PubMed]

Demirdöven, N.

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett.90(4), 047401 (2003).
[CrossRef] [PubMed]

Dimler, F.

Donaldson, P. M.

Eichberger, R.

Ernstorfer, R.

Fleming, G. R.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434(7033), 625–628 (2005).
[CrossRef] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys.121(9), 4221–4236 (2004).
[CrossRef] [PubMed]

Gieseking, B.

Gundlach, L.

Gundogdu, K.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” (Invited) Rev. Sci. Instrum.82(8), 081301 (2011).
[CrossRef] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324(5931), 1169–1173 (2009).
[CrossRef] [PubMed]

Hamm, P.

Hauer, J.

F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
[CrossRef] [PubMed]

T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
[CrossRef]

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett.34(21), 3301–3303 (2009).
[CrossRef] [PubMed]

Jonas, D. M.

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional Fourier transform spectra of multilevel systems,” J. Phys. Chem. A113(47), 13287–13299 (2009).
[CrossRef] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

Karaiskaj, D.

D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
[CrossRef] [PubMed]

Kauffmann, H.

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

Kauffmann, H. F.

F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
[CrossRef] [PubMed]

T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
[CrossRef]

D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H. F. Kauffmann, “Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy,” Phys. Rev. Lett.108(6), 067401 (2012).
[CrossRef] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett.34(21), 3301–3303 (2009).
[CrossRef] [PubMed]

Keusters, D.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Khalil, M.

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett.90(4), 047401 (2003).
[CrossRef] [PubMed]

Kitney, K. A.

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional Fourier transform spectra of multilevel systems,” J. Phys. Chem. A113(47), 13287–13299 (2009).
[CrossRef] [PubMed]

Langhojer, F.

Lewis, K. L. M.

Li, X. Q.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324(5931), 1169–1173 (2009).
[CrossRef] [PubMed]

T. H. Zhang, C. N. Borca, X. Q. Li, and S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express13(19), 7432–7441 (2005).
[CrossRef] [PubMed]

Löhrig, T.

Lukes, V.

T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
[CrossRef]

Mancal, T.

F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
[CrossRef] [PubMed]

T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
[CrossRef]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys.121(9), 4221–4236 (2004).
[CrossRef] [PubMed]

Mathies, R. A.

W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem.43(1), 497–523 (1992).
[CrossRef] [PubMed]

Maznev, A. A.

Miller, R. J. D.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett.386(1-3), 184–189 (2004).
[CrossRef]

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B106(40), 10460–10467 (2002).
[CrossRef]

Milota, F.

F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
[CrossRef] [PubMed]

T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
[CrossRef]

D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H. F. Kauffmann, “Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy,” Phys. Rev. Lett.108(6), 067401 (2012).
[CrossRef] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett.34(21), 3301–3303 (2009).
[CrossRef] [PubMed]

Mirin, R. P.

D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
[CrossRef] [PubMed]

Mukamel, S.

D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H. F. Kauffmann, “Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy,” Phys. Rev. Lett.108(6), 067401 (2012).
[CrossRef] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
[CrossRef] [PubMed]

Myers, J. A.

Nelson, K. A.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” (Invited) Rev. Sci. Instrum.82(8), 081301 (2011).
[CrossRef] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324(5931), 1169–1173 (2009).
[CrossRef] [PubMed]

A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett.23(17), 1378–1380 (1998).
[CrossRef] [PubMed]

Nemeth, A.

D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H. F. Kauffmann, “Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy,” Phys. Rev. Lett.108(6), 067401 (2012).
[CrossRef] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett.34(21), 3301–3303 (2009).
[CrossRef] [PubMed]

Ogilvie, J. P.

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express16(22), 17420–17428 (2008).
[CrossRef] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett.386(1-3), 184–189 (2004).
[CrossRef]

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B106(40), 10460–10467 (2002).
[CrossRef]

Piel, J.

Plazanet, M.

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B106(40), 10460–10467 (2002).
[CrossRef]

Pollard, W. T.

W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem.43(1), 497–523 (1992).
[CrossRef] [PubMed]

Prokhorenko, V. I.

F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
[CrossRef] [PubMed]

Pugliesi, I.

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

Pullerits, T.

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

Riedle, E.

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

J. Piel, E. Riedle, L. Gundlach, R. Ernstorfer, and R. Eichberger, “Sub-20 fs visible pulses with 750 nJ energy from a 100 kHz noncollinear optical parametric amplifier,” Opt. Lett.31(9), 1289–1291 (2006).
[CrossRef] [PubMed]

Schwarz, C.

Selig, U.

Shim, S. H.

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
[CrossRef] [PubMed]

Smith, E. R.

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional Fourier transform spectra of multilevel systems,” J. Phys. Chem. A113(47), 13287–13299 (2009).
[CrossRef] [PubMed]

Sperling, J.

D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H. F. Kauffmann, “Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy,” Phys. Rev. Lett.108(6), 067401 (2012).
[CrossRef] [PubMed]

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett.34(21), 3301–3303 (2009).
[CrossRef] [PubMed]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434(7033), 625–628 (2005).
[CrossRef] [PubMed]

Stiopkin, I. V.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys.121(9), 4221–4236 (2004).
[CrossRef] [PubMed]

Stone, K. W.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” (Invited) Rev. Sci. Instrum.82(8), 081301 (2011).
[CrossRef] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324(5931), 1169–1173 (2009).
[CrossRef] [PubMed]

Strzalka, H.

Suzaki, Y.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Tekavec, P. F.

Tian, P. F.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Tokmakoff, A.

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett.90(4), 047401 (2003).
[CrossRef] [PubMed]

Turner, D. B.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” (Invited) Rev. Sci. Instrum.82(8), 081301 (2011).
[CrossRef] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324(5931), 1169–1173 (2009).
[CrossRef] [PubMed]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434(7033), 625–628 (2005).
[CrossRef] [PubMed]

von Berlepsch, H.

F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
[CrossRef] [PubMed]

Warren, W. S.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Yang, L. J.

D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
[CrossRef] [PubMed]

Yetzbacher, M. K.

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional Fourier transform spectra of multilevel systems,” J. Phys. Chem. A113(47), 13287–13299 (2009).
[CrossRef] [PubMed]

Zanni, M. T.

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
[CrossRef] [PubMed]

Zhang, T. H.

Annu. Rev. Phys. Chem.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem.43(1), 497–523 (1992).
[CrossRef] [PubMed]

Chem. Phys. Lett.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett.386(1-3), 184–189 (2004).
[CrossRef]

J. Chem. Phys.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys.121(9), 4221–4236 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. A

F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates,” J. Phys. Chem. A130318064008000 (2013), doi:.
[CrossRef] [PubMed]

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional Fourier transform spectra of multilevel systems,” J. Phys. Chem. A113(47), 13287–13299 (2009).
[CrossRef] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: A 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. B

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B106(40), 10460–10467 (2002).
[CrossRef]

J. Phys. Chem. Lett.

T. Mančal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent sgnatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett.3(11), 1497–1502 (2012).
[CrossRef]

N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, “Electronic Double-quantum coherences and their impact on ultrafast spectroscopy: The example of beta-carotene,” J. Phys. Chem. Lett.1(23), 3366–3370 (2010).
[CrossRef]

Nature

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434(7033), 625–628 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett.

D. Karaiskaj, A. D. Bristow, L. J. Yang, X. C. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104(11), 117401 (2010).
[CrossRef] [PubMed]

D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H. F. Kauffmann, “Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy,” Phys. Rev. Lett.108(6), 067401 (2012).
[CrossRef] [PubMed]

M. Khalil, N. Demirdöven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett.90(4), 047401 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” (Invited) Rev. Sci. Instrum.82(8), 081301 (2011).
[CrossRef] [PubMed]

Science

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324(5931), 1169–1173 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental layout for a het-TG-based 2D-expeiment. Two pulses from a beam splitter (BS) are focused on a variable and a static diffractive optical element (DOE) respectively to give the phase-matching pattern shown in Section A-A. Delay t1 between pulses along k1 and k2 is set via a motorized wedge pair (WP2). t2 between k3 and local oscillators (LO + ,-) and the k1,2 pair is controlled by a delay stage. The fused silica substrate shown in Section B-B ensures a delay between the LOs and k3 of either 0 or around 540 fs, for pump-probe (TG) or 2D-measurements, respectively.

Fig. 2
Fig. 2

(A) Comparison between het-TG and PP, measured at relative high pulse energies of 0.7 nJ per pulse to yield a measurable PP-signal. (B) Comparison between absorptive components of het-TG and the 2D-spectrum’sprojection measured using 0.2 nJ per pulse.

Fig. 3
Fig. 3

Absorptive component of the 2D spectrum of PVA/C8O3 at t2 = 100 fs in comparison to the absorption and excitation spectrum in the lower panel. Positive (negative) signals are shown in red (blue) in 5% steps. The dashed grey line marks the nodal line at zero intensity. The inset shows a zoom into the indicated cross-peak region with lines drawn at 0.5% steps.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S 2D ( ω 1 , t 2 , ω 3 )d ω 1 . e i ω 1 t 1 = S ^ (3) ( t 1 , t 2 , ω 3 ).
S 2D ( ω 1 , t 2 , ω 3 )d ω 1 = S ^ (3) ( t 1 =0, t 2 , ω 3 ) = E ^ TG ( t 2 , ω 3 )n( ω t3 )/( ω t3 ).
[ E ^ Pr ( ω ) S 2D ( ω 1 , t 2 , ω 3 )d ω 1 ]=Δ I PP ( t 2 , ω 3 ).
I het ( t 2 , ω 3 )= | E ^ TG ( t 2 , ω 3 )+ E ^ LO (ω) | 2 [ E ^ TG ( t 2 , ω 3 ) E ^ LO (ω) * ] Δ I PP ( t 2 , ω 3 ).
[ E ^ Pr ( ω ) S 2D ( ω 1 , t 2 , ω 3 )d ω 1 ]=[ E ^ TG ( t 2 , ω 3 ) E ^ LO (ω) * ].
I LO+ | E ^ LO (ω). e i ϕ DOE + E ^ TG ( t 2 , ω 3 ). e i ϕ TG | 2 , and I LO- | E ^ LO (ω). e i( ϕ Win ϕ DOE ) + E ^ TG ( t 2 , ω 3 ). e i ϕ TG | 2 .
I LO+ I LO- 4 E ^ LO (ω)( E Disp sin ϕ Win 2 E Abs cos ϕ Win 2 )sin( ϕ Win 2 ϕ DOE + ϕ TG ).

Metrics