Abstract

Metamaterial has demonstrated exotic electromagnetic (EM) properties and various applications, for example perfect absorbers. Cascaded perfect absorbers further extend the spectral engineering ability. Perfect alignment of subcells was usually presumed in previous studies. We numerically investigated the effect of lateral misalignments existing in the multiple lithography steps for vertically cascaded metamaterial absorbers and found that the position deviations of the subcells play an important role of the spectral response. As an example, near-unity absorbance reduces to only 30% for a λ/10 subcell misalignment. The detailed investigation of EM field and induced current distributions reveals that the relative position variations of strongly coupled subcells contribute to this phenomenon. The results give us an evaluation that how much registration accuracy is required in multi-step lithography for cascaded metamaterials and on the other side a hint of the potential application of this high position sensitivity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Cui, D. R. Smith, and R. Liu, eds., Metamaterials-Theory, Design, and Applications (Springer, 2009).
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
    [CrossRef] [PubMed]
  3. P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
    [CrossRef]
  4. H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
    [CrossRef] [PubMed]
  5. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett.36(8), 1524–1526 (2011).
    [CrossRef] [PubMed]
  6. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
    [CrossRef] [PubMed]
  7. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun2, 517 (2011).
    [CrossRef] [PubMed]
  8. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012).
    [CrossRef] [PubMed]
  9. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
    [CrossRef]
  10. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
    [CrossRef] [PubMed]
  11. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36(6), 945–947 (2011).
    [CrossRef] [PubMed]
  12. Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
    [CrossRef]
  13. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012).
    [CrossRef] [PubMed]
  14. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011).
    [CrossRef] [PubMed]
  15. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
    [CrossRef]
  16. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37(6), 1038–1040 (2012).
    [CrossRef] [PubMed]
  17. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
    [CrossRef]
  18. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19(22), 21155–21162 (2011).
    [CrossRef] [PubMed]
  19. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
    [CrossRef]
  20. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron.12(6), 1106–1115 (2006).
    [CrossRef]
  21. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
    [CrossRef] [PubMed]

2013 (1)

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
[CrossRef]

2012 (6)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012).
[CrossRef] [PubMed]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37(6), 1038–1040 (2012).
[CrossRef] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

2011 (8)

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19(22), 21155–21162 (2011).
[CrossRef] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36(6), 945–947 (2011).
[CrossRef] [PubMed]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011).
[CrossRef] [PubMed]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun2, 517 (2011).
[CrossRef] [PubMed]

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett.36(8), 1524–1526 (2011).
[CrossRef] [PubMed]

2010 (3)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
[CrossRef]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

2006 (1)

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron.12(6), 1106–1115 (2006).
[CrossRef]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Alves, F.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun2, 517 (2011).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun2, 517 (2011).
[CrossRef] [PubMed]

Azad, A. K.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Bouchon, P.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun2, 517 (2011).
[CrossRef] [PubMed]

Buchwald, W.

Chen, F.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Chen, H. T.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Chen, Q.

Cheng, Q.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Cheong, H.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
[CrossRef]

Cui, T. J.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Cumming, D. R. S.

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Dong, G.

Drachev, V. P.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron.12(6), 1106–1115 (2006).
[CrossRef]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun2, 517 (2011).
[CrossRef] [PubMed]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Grant, J.

Grbovic, D.

Guo, J.

Haïdar, R.

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Hao, Q.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
[CrossRef]

Hendrickson, J.

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Huang, T. J.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

Jang, W. H.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
[CrossRef]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
[CrossRef]

Karunasiri, G.

Kearney, B.

Khalid, A.

Khoo, I.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

Kildishev, A. V.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron.12(6), 1106–1115 (2006).
[CrossRef]

Kim, K. W.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
[CrossRef]

Klar, T. A.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron.12(6), 1106–1115 (2006).
[CrossRef]

Koechlin, C.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Lapsley, M.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

Lee, Y. P.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
[CrossRef]

Li, H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Liu, L.

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

Lok, L. B.

Lu, M.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

Ma, Y.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

O’Hara, J. F.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Pardo, F.

Park, J. W.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
[CrossRef]

Pelouard, J. L.

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Rhee, J. Y.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
[CrossRef]

Saha, S.

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Shalaev, V. M.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron.12(6), 1106–1115 (2006).
[CrossRef]

Shen, X. P.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Soref, R.

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

Sun, J.

Taylor, A. J.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Tuong, P. V.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
[CrossRef]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Ye, Y. Q.

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Zhang, B.

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012).
[CrossRef] [PubMed]

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

Zhao, Y.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

Zhou, J.

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19(22), 21155–21162 (2011).
[CrossRef] [PubMed]

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett.102(8), 081122 (2013).
[CrossRef]

Y. Zhao, Q. Hao, Y. Ma, M. Lu, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett.100(5), 053119 (2012).
[CrossRef]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron.12(6), 1106–1115 (2006).
[CrossRef]

J. Appl. Phys. (1)

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Commun (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun2, 517 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. B (1)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Science (1)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Other (1)

T. J. Cui, D. R. Smith, and R. Liu, eds., Metamaterials-Theory, Design, and Applications (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of a single-cell MMA. (a) Plan view, (b) Cross section.

Fig. 2
Fig. 2

(a) Absorption spectra of MMAs with p = 16, 18, 22, 32, 44 and 60 μm and l = 15 μm. (b) Absorption spectra of MMAs with p = 22 μm and l = 11, 13, 15 and 17 μm, respectively. w = 6 μm. Incident wave is TM polarization.

Fig. 3
Fig. 3

(a)-(c) |Hy|2, (d)-(f) |Ez|2, (g)-(i) Jx distributions at the resonant absorption frequencies. (a), (d) and (g) are in the xz plane along the dashed line in Fig. 1(a); (b), (c), (e) and (f) are in the xy plane through the center of the dielectric layer; (h) and (i) are at the bottom surface of the top metal layer and the top surface of the bottom metal layer. l = 15 μm in (a), (b), (d), (e), (g)-(h), and l = 11 μm in (c) and (f). Magnetic field intensity bar in the top row refers to (a)-(c); electric field intensity bar in the middle row refers to (d)-(f); induced current bar in the bottom row refers to (g)-(i). The white lines depict the metal structures in MMAs.

Fig. 4
Fig. 4

(a) Cross section of a vertically cascaded MMA. (b) Absorption spectrum at h1 = 0.7 μm, h2 = 1.2 μm, h3 = 2.0 μm, l1 = 17 μm, l2 = 15.4 μm, and l3 = 15 μm. The absorption spectrum at l = 17 μm in Fig. 2(b) is shown for comparison. Incident wave is TM polarization.

Fig. 5
Fig. 5

|Hy|2 distribution in the xz plane through the center of the cross. (a) 4.66 THz, (b) 5.01THz, (c) 5.53 THz. The white lines depict the metal layers.

Fig. 6
Fig. 6

Absorption spectra of cascaded MMAs with a lateral misalignment Δx = 0, 2, 3, 6, 11 μm for the top cross array for (a) TM and (b) TE polarized incident waves.

Fig. 7
Fig. 7

(a)-(c) Jx, (d)-(f) |Hy|2 and (g)-(i) |Ez|2 distributions in the xz plane through the center of the cross at 5.53 THz, 5.68 THz, 6.42 THz for TM polarized incident waves in MMAs at a shift of Δx = 0, 2, 6 μm for the top cross array, respectively. Current bar in the left column refers to (a)-(c); magnetic field intensity bar in the middle column refers to (d)-(f); electric field intensity bar in the right column refers to (g)-(i). The white lines depict the metal layers.

Fig. 8
Fig. 8

|Ez|2 distributions in the xy plane through the center of the dielectric layer in a MMA at (a) Δx = 2 μm at 5.50 THz, (b) Δx = 6 μm at 5.63 THz for TE polarized incident waves. The white lines depict the top cross.

Fig. 9
Fig. 9

Absorption spectra of cascaded MMAs. (a) Δx = Δy = 0, 2, 3, 6 μm of the top cross array, (b) Δx = Δy = 3 μm of the middle cross array and Δx = Δy = 6 μm of the top cross array. The result of the aligned structure is shown as green slide line for comparison. Incident wave is TM polarization.

Fig. 10
Fig. 10

Absorption spectra of near IR vertically cascaded MMAs with the similar structure as shown in Fig. 4(a), where p = 170 nm, h1 = 18 nm, h2 = 16 nm, h3 = 16 nm, w = 60 nm, l1 = 140 nm, l2 = 120 nm, and l3 = 110 nm. The metal is 16 nm thick gold and the dielectric layer is SiO2 (n = 1.45). The green solid line is for the aligned structure, the red dashed line is for misaligned structure with Δx = Δy = 20 nm of the middle cross array and Δx = Δy = 30 nm of the top cross array, the black dot line is for misaligned structure with Δx = Δy = 30 nm of the middle cross array and Δx = Δy = 60 nm of the top cross array.

Metrics