Abstract

We examine the generation of axially modulated plasmas produced from cluster jets whose supersonic flow is intersected by thin wires. Such plasmas have application to modulated plasma waveguides. By appropriately limiting shock waves from the wires, plasma axial modulation periods can be as small as 70 μm, with plasma structures as narrow as 45 µm. The effect of shocks is eliminated with increased cluster size accompanied by a reduced monomer component of the flow.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasmas3(5), 2149–2155 (1996).
    [CrossRef]
  2. B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
    [CrossRef] [PubMed]
  3. A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett.100, 195001 (2008).
  4. S. J. Yoon, J. P. Palastro, D. Gordon, T. M. Antonsen, and H. M. Milchberg, “Quasi-phase-matched acceleration of electrons in a corrugated plasma channel,” Phys. Rev. STAB15, 081305 (2012).
  5. H. Sheng, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. M. Milchberg, “Plasma waveguide efficiently generated by Bessel beams in elongated cluster gas jets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72, 036411 (2005).
  6. H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as a medium for efficient plasma waveguide generation,” Phil. Trans. R. Soc. A364, 647–661 (2006).
  7. V. Kumarappan, K. Y. Kim, and H. M. Milchberg, “Guiding of Intense Laser Pulses in Plasma Waveguides Produced from Efficient, Femtosecond End-Pumped Heating of Clustered Gases,” Phys. Rev. Lett.94(20), 205004 (2005).
    [CrossRef] [PubMed]
  8. W. T. Mohamed, G. Chen, J. Kim, G. X. Tao, J. Ahn, and D. E. Kim, “Controlling the length of plasma waveguide up to 5 mm, produced by femtosecond laser pulses in atomic clustered gas,” Opt. Express19(17), 15919–15928 (2011).
    [CrossRef] [PubMed]
  9. B. D. Layer, A. G. York, S. Varma, Y.-H. Chen, and H. M. Milchberg, “Periodic index-modulated plasma waveguide,” Opt. Express17(6), 4263–4267 (2009).
    [CrossRef] [PubMed]
  10. T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
    [CrossRef]
  11. O. F. Hagena and W. Obert, “Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temerature, Nozzle Size, and Test Gas,” J. Chem. Phys.56(5), 1793–1802 (1972).
    [CrossRef]
  12. K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurement of the average size and density of clusters in a gas jet,” Appl. Phys. Lett.83(15), 3210–3212 (2003).
    [CrossRef]
  13. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover Publications (2002).
  14. A. Wada, H. Kanamori, and S. Iwata, “Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion,” J. Chem. Phys.109(21), 9434–9438 (1998).
    [CrossRef]
  15. H. M. Milchberg, S. J. McNaught, and E. Parra, “Plasma Hydrodynamics of the intense laser-cluster interaction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056402 (2001).
    [CrossRef] [PubMed]
  16. T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A53(5), 3379–3402 (1996).
    [CrossRef] [PubMed]
  17. T. R. Clark and H. M. Milchberg, “Time- and Space-Resolved Density Evolution of the Plasma Waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
    [CrossRef]

2012 (2)

S. J. Yoon, J. P. Palastro, D. Gordon, T. M. Antonsen, and H. M. Milchberg, “Quasi-phase-matched acceleration of electrons in a corrugated plasma channel,” Phys. Rev. STAB15, 081305 (2012).

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

2011 (1)

2009 (1)

2008 (1)

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett.100, 195001 (2008).

2007 (1)

B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
[CrossRef] [PubMed]

2006 (1)

H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as a medium for efficient plasma waveguide generation,” Phil. Trans. R. Soc. A364, 647–661 (2006).

2005 (2)

V. Kumarappan, K. Y. Kim, and H. M. Milchberg, “Guiding of Intense Laser Pulses in Plasma Waveguides Produced from Efficient, Femtosecond End-Pumped Heating of Clustered Gases,” Phys. Rev. Lett.94(20), 205004 (2005).
[CrossRef] [PubMed]

H. Sheng, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. M. Milchberg, “Plasma waveguide efficiently generated by Bessel beams in elongated cluster gas jets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72, 036411 (2005).

2003 (1)

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurement of the average size and density of clusters in a gas jet,” Appl. Phys. Lett.83(15), 3210–3212 (2003).
[CrossRef]

2001 (1)

H. M. Milchberg, S. J. McNaught, and E. Parra, “Plasma Hydrodynamics of the intense laser-cluster interaction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056402 (2001).
[CrossRef] [PubMed]

1998 (1)

A. Wada, H. Kanamori, and S. Iwata, “Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion,” J. Chem. Phys.109(21), 9434–9438 (1998).
[CrossRef]

1997 (1)

T. R. Clark and H. M. Milchberg, “Time- and Space-Resolved Density Evolution of the Plasma Waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
[CrossRef]

1996 (2)

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A53(5), 3379–3402 (1996).
[CrossRef] [PubMed]

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasmas3(5), 2149–2155 (1996).
[CrossRef]

1972 (1)

O. F. Hagena and W. Obert, “Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temerature, Nozzle Size, and Test Gas,” J. Chem. Phys.56(5), 1793–1802 (1972).
[CrossRef]

Ahn, J.

Antonsen, T. M.

S. J. Yoon, J. P. Palastro, D. Gordon, T. M. Antonsen, and H. M. Milchberg, “Quasi-phase-matched acceleration of electrons in a corrugated plasma channel,” Phys. Rev. STAB15, 081305 (2012).

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett.100, 195001 (2008).

B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
[CrossRef] [PubMed]

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasmas3(5), 2149–2155 (1996).
[CrossRef]

Chang, Y.-L.

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

Chen, G.

Chen, S.-Y.

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

Chen, Y.-H.

B. D. Layer, A. G. York, S. Varma, Y.-H. Chen, and H. M. Milchberg, “Periodic index-modulated plasma waveguide,” Opt. Express17(6), 4263–4267 (2009).
[CrossRef] [PubMed]

B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
[CrossRef] [PubMed]

Chu, H.-H.

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

Clark, T. R.

T. R. Clark and H. M. Milchberg, “Time- and Space-Resolved Density Evolution of the Plasma Waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
[CrossRef]

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasmas3(5), 2149–2155 (1996).
[CrossRef]

Ditmire, T.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A53(5), 3379–3402 (1996).
[CrossRef] [PubMed]

Donnelly, T.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A53(5), 3379–3402 (1996).
[CrossRef] [PubMed]

Durfee, C. G.

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasmas3(5), 2149–2155 (1996).
[CrossRef]

Falcone, R. W.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A53(5), 3379–3402 (1996).
[CrossRef] [PubMed]

Gordon, D.

S. J. Yoon, J. P. Palastro, D. Gordon, T. M. Antonsen, and H. M. Milchberg, “Quasi-phase-matched acceleration of electrons in a corrugated plasma channel,” Phys. Rev. STAB15, 081305 (2012).

Hagena, O. F.

O. F. Hagena and W. Obert, “Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temerature, Nozzle Size, and Test Gas,” J. Chem. Phys.56(5), 1793–1802 (1972).
[CrossRef]

Ho, Y.-C.

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

Hung, T.-S.

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

Iwata, S.

A. Wada, H. Kanamori, and S. Iwata, “Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion,” J. Chem. Phys.109(21), 9434–9438 (1998).
[CrossRef]

Kanamori, H.

A. Wada, H. Kanamori, and S. Iwata, “Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion,” J. Chem. Phys.109(21), 9434–9438 (1998).
[CrossRef]

Kim, D. E.

Kim, J.

Kim, K. Y.

H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as a medium for efficient plasma waveguide generation,” Phil. Trans. R. Soc. A364, 647–661 (2006).

V. Kumarappan, K. Y. Kim, and H. M. Milchberg, “Guiding of Intense Laser Pulses in Plasma Waveguides Produced from Efficient, Femtosecond End-Pumped Heating of Clustered Gases,” Phys. Rev. Lett.94(20), 205004 (2005).
[CrossRef] [PubMed]

H. Sheng, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. M. Milchberg, “Plasma waveguide efficiently generated by Bessel beams in elongated cluster gas jets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72, 036411 (2005).

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurement of the average size and density of clusters in a gas jet,” Appl. Phys. Lett.83(15), 3210–3212 (2003).
[CrossRef]

Kumarappan, V.

H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as a medium for efficient plasma waveguide generation,” Phil. Trans. R. Soc. A364, 647–661 (2006).

H. Sheng, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. M. Milchberg, “Plasma waveguide efficiently generated by Bessel beams in elongated cluster gas jets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72, 036411 (2005).

V. Kumarappan, K. Y. Kim, and H. M. Milchberg, “Guiding of Intense Laser Pulses in Plasma Waveguides Produced from Efficient, Femtosecond End-Pumped Heating of Clustered Gases,” Phys. Rev. Lett.94(20), 205004 (2005).
[CrossRef] [PubMed]

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurement of the average size and density of clusters in a gas jet,” Appl. Phys. Lett.83(15), 3210–3212 (2003).
[CrossRef]

Layer, B. D.

B. D. Layer, A. G. York, S. Varma, Y.-H. Chen, and H. M. Milchberg, “Periodic index-modulated plasma waveguide,” Opt. Express17(6), 4263–4267 (2009).
[CrossRef] [PubMed]

B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
[CrossRef] [PubMed]

H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as a medium for efficient plasma waveguide generation,” Phil. Trans. R. Soc. A364, 647–661 (2006).

H. Sheng, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. M. Milchberg, “Plasma waveguide efficiently generated by Bessel beams in elongated cluster gas jets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72, 036411 (2005).

Leng, Y.

B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
[CrossRef] [PubMed]

Lin, J.-Y.

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

McNaught, S. J.

H. M. Milchberg, S. J. McNaught, and E. Parra, “Plasma Hydrodynamics of the intense laser-cluster interaction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056402 (2001).
[CrossRef] [PubMed]

Milchberg, H. M.

S. J. Yoon, J. P. Palastro, D. Gordon, T. M. Antonsen, and H. M. Milchberg, “Quasi-phase-matched acceleration of electrons in a corrugated plasma channel,” Phys. Rev. STAB15, 081305 (2012).

B. D. Layer, A. G. York, S. Varma, Y.-H. Chen, and H. M. Milchberg, “Periodic index-modulated plasma waveguide,” Opt. Express17(6), 4263–4267 (2009).
[CrossRef] [PubMed]

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett.100, 195001 (2008).

B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
[CrossRef] [PubMed]

H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as a medium for efficient plasma waveguide generation,” Phil. Trans. R. Soc. A364, 647–661 (2006).

V. Kumarappan, K. Y. Kim, and H. M. Milchberg, “Guiding of Intense Laser Pulses in Plasma Waveguides Produced from Efficient, Femtosecond End-Pumped Heating of Clustered Gases,” Phys. Rev. Lett.94(20), 205004 (2005).
[CrossRef] [PubMed]

H. Sheng, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. M. Milchberg, “Plasma waveguide efficiently generated by Bessel beams in elongated cluster gas jets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72, 036411 (2005).

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurement of the average size and density of clusters in a gas jet,” Appl. Phys. Lett.83(15), 3210–3212 (2003).
[CrossRef]

H. M. Milchberg, S. J. McNaught, and E. Parra, “Plasma Hydrodynamics of the intense laser-cluster interaction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056402 (2001).
[CrossRef] [PubMed]

T. R. Clark and H. M. Milchberg, “Time- and Space-Resolved Density Evolution of the Plasma Waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
[CrossRef]

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasmas3(5), 2149–2155 (1996).
[CrossRef]

Mohamed, W. T.

Mora, P.

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasmas3(5), 2149–2155 (1996).
[CrossRef]

Obert, W.

O. F. Hagena and W. Obert, “Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temerature, Nozzle Size, and Test Gas,” J. Chem. Phys.56(5), 1793–1802 (1972).
[CrossRef]

Palastro, J. P.

S. J. Yoon, J. P. Palastro, D. Gordon, T. M. Antonsen, and H. M. Milchberg, “Quasi-phase-matched acceleration of electrons in a corrugated plasma channel,” Phys. Rev. STAB15, 081305 (2012).

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett.100, 195001 (2008).

Parra, E.

H. M. Milchberg, S. J. McNaught, and E. Parra, “Plasma Hydrodynamics of the intense laser-cluster interaction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056402 (2001).
[CrossRef] [PubMed]

Perry, M. D.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A53(5), 3379–3402 (1996).
[CrossRef] [PubMed]

Rubenchik, A. M.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A53(5), 3379–3402 (1996).
[CrossRef] [PubMed]

Sheng, H.

H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as a medium for efficient plasma waveguide generation,” Phil. Trans. R. Soc. A364, 647–661 (2006).

H. Sheng, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. M. Milchberg, “Plasma waveguide efficiently generated by Bessel beams in elongated cluster gas jets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72, 036411 (2005).

Tao, G. X.

Varma, S.

B. D. Layer, A. G. York, S. Varma, Y.-H. Chen, and H. M. Milchberg, “Periodic index-modulated plasma waveguide,” Opt. Express17(6), 4263–4267 (2009).
[CrossRef] [PubMed]

B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
[CrossRef] [PubMed]

Wada, A.

A. Wada, H. Kanamori, and S. Iwata, “Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion,” J. Chem. Phys.109(21), 9434–9438 (1998).
[CrossRef]

Wang, J.

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

Wong, S.-J.

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

Yoon, S. J.

S. J. Yoon, J. P. Palastro, D. Gordon, T. M. Antonsen, and H. M. Milchberg, “Quasi-phase-matched acceleration of electrons in a corrugated plasma channel,” Phys. Rev. STAB15, 081305 (2012).

York, A. G.

B. D. Layer, A. G. York, S. Varma, Y.-H. Chen, and H. M. Milchberg, “Periodic index-modulated plasma waveguide,” Opt. Express17(6), 4263–4267 (2009).
[CrossRef] [PubMed]

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett.100, 195001 (2008).

B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurement of the average size and density of clusters in a gas jet,” Appl. Phys. Lett.83(15), 3210–3212 (2003).
[CrossRef]

J. Chem. Phys. (2)

A. Wada, H. Kanamori, and S. Iwata, “Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion,” J. Chem. Phys.109(21), 9434–9438 (1998).
[CrossRef]

O. F. Hagena and W. Obert, “Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temerature, Nozzle Size, and Test Gas,” J. Chem. Phys.56(5), 1793–1802 (1972).
[CrossRef]

Opt. Express (2)

Phil. Trans. R. Soc. A (1)

H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as a medium for efficient plasma waveguide generation,” Phil. Trans. R. Soc. A364, 647–661 (2006).

Phys. Plasmas (2)

T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Programmably structured plasma waveguide for development of table-top and photon and particle sources,” Phys. Plasmas19(6), 063109 (2012).
[CrossRef]

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasmas3(5), 2149–2155 (1996).
[CrossRef]

Phys. Rev. A (1)

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A53(5), 3379–3402 (1996).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

H. M. Milchberg, S. J. McNaught, and E. Parra, “Plasma Hydrodynamics of the intense laser-cluster interaction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056402 (2001).
[CrossRef] [PubMed]

H. Sheng, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. M. Milchberg, “Plasma waveguide efficiently generated by Bessel beams in elongated cluster gas jets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72, 036411 (2005).

Phys. Rev. Lett. (4)

V. Kumarappan, K. Y. Kim, and H. M. Milchberg, “Guiding of Intense Laser Pulses in Plasma Waveguides Produced from Efficient, Femtosecond End-Pumped Heating of Clustered Gases,” Phys. Rev. Lett.94(20), 205004 (2005).
[CrossRef] [PubMed]

B. D. Layer, A. G. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys. Rev. Lett.99(3), 035001 (2007).
[CrossRef] [PubMed]

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett.100, 195001 (2008).

T. R. Clark and H. M. Milchberg, “Time- and Space-Resolved Density Evolution of the Plasma Waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
[CrossRef]

Phys. Rev. STAB (1)

S. J. Yoon, J. P. Palastro, D. Gordon, T. M. Antonsen, and H. M. Milchberg, “Quasi-phase-matched acceleration of electrons in a corrugated plasma channel,” Phys. Rev. STAB15, 081305 (2012).

Other (1)

Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover Publications (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup: Here are shown two 25 µm diameter wires, one mobile and one stationary, placed across the elongated nozzle of a cryogenically cooled supersonic gas jet. A 200mJ, 35fs Ti:Sapphire laser pulse was focused by an f/25 spherical mirror to ionize the cluster target. A portion of the 800nm laser pulse is split from the main beam, frequency doubled, and used as a transverse interferometry/shadowgraphy probe. Shown are an example raw transverse interferogram, followed by results of a Fourier transform analysis yielding the phase shift imposed by the plasma on the probe.

Fig. 2
Fig. 2

Average nitrogen cluster size (radius) and collisional mean free path as a function of valve temperature at a backing pressure of 400 psi.

Fig. 3
Fig. 3

(a) Shadowgraph of shocks in nitrogen jet flow above a single 25μm tungsten wire, with probe delay 1ps. The wire (indicated by a white dot) is centered on the shocks. The flow is directed down. The valve temperature and pressure were 293K and 300 psi. The blue and red arrows depict the fluid flow and sound velocities, and the dashed white line highlights the shock location. (b) Sequence of extracted phase images of plasma resulting from femtosecond laser interaction with the gas flow 0.5, 0.9 and 1.1mm above the 25μm wire. The laser enters from the left. The probe delay is 1 ps.

Fig. 4
Fig. 4

(a). Phase image of laser-heated plasma produced in nitrogen gas flow at height 1.1 mm above a single 25 μm wire, for probe delay 1 ps. The bumps are increased electron density from laser heating of shock-enhanced gas density zones. (b) Phase lineouts of single wire plasmas (such as in (a)) for a sequence of valve temperatures.

Fig. 5
Fig. 5

Phase images, with probe delay 1 ps, of laser heated flow at height 1.1 mm above two wires separated by 150μm at temperature (a) 173K, (b) 133K, and (c) 93K. Increased clustering occurs at reduced temperature.

Fig. 6
Fig. 6

Phase images of nitrogen plasma generated at heights 0.5 mm and 1 mm above two wire separated by 200 μm, for valve temperatures 133 K, 173 K, and 93 K. The probe delay is 1 ps.

Fig. 7
Fig. 7

Phase images of laser produced plasma in a nitrogen cluster jet flowing past two 25μm tungsten wires separated by (a) 65μm, (b) 70μm, (c) 90μm, and (d) 170μm. In each image the gas jet was at 93K and 250PSI backing pressure. The laser propagation is from the left at height 1.1 mm above the wires. The probe delay is 1 ps.

Fig. 8
Fig. 8

Electron density profiles of nitrogen plasma channels produced 1.1 mm above the wires, at probe delays: 0.5ns, 1ns, 2ns, and 3ns, with two wire separations: (a) 60 µm and (b)150 µm. (c) Density profile lineouts of (a) along dotted white line. (d) Density profile lineouts of (b) along dotted white line.

Fig. 9
Fig. 9

Time evolution of electron density profiles of plasma waveguides with 200μm axial modulations in (a) a nitrogen cluster jet at 93K and 250 PSI backing pressure and (b) A 90% hydrogen / 10% argon cluster jet backed at 93K and 300 PSI. The waveguides are generated 1.1 mm above the wires.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T 2 T 1 = P 2 ρ 1 P 1 ρ 2 =1+ ΔT T =[ 1+ 2γ γ+1 ( M 2 sin 2 β1) ][ 2+(γ1) M 2 sin 2 β (γ+1) M 2 sin 2 β ].
ΔT T =4δα( γ1 γ+1 ) M 2 1 .

Metrics