Abstract

We present a theoretical study of the optical properties of a strongly coupled metallic dimer when an ensemble of molecules is placed in the inter-particle cavity. The linking molecules are characterized by an excitonic transition which couples to the Bonding Dimer Plasmon (BDP) and the Bonding Quadrupolar Plasmon (BQP) resonances, arising from the hybridization of the dipolar and quadrupolar modes of the individual nanoparticles, respectively. As a consequence, both modes split into two coupled plasmon-exciton modes, so called plexcitons. The Charge Transfer Plasmon (CTP) resonance, involving plasmonic oscillations of the dimer as a whole, arises when the conductance of the excitonic junction is above a threshold value. The possibility of exploiting plexcitonic resonances for sensing is explored in detail. We find high sensitivity to the environment when different dielectric embedding media are considered. Contrary to standard methods, we propose a new framework for effective sensing based on the relative intensity of plexcitonic peaks.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticle plasmonics,” Laser & Photon. Rev. 2, 136–159 (2008).
    [CrossRef]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [CrossRef]
  3. N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [CrossRef] [PubMed]
  4. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with Zeptomole sensitivity,” Nano Lett. 3, 1057–1062, (2003).
    [CrossRef]
  5. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
    [CrossRef]
  6. M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
    [CrossRef] [PubMed]
  7. H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Materials 9, 205–213 (2010).
    [CrossRef]
  8. Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
    [CrossRef] [PubMed]
  9. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef] [PubMed]
  10. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
    [CrossRef] [PubMed]
  11. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
    [CrossRef] [PubMed]
  12. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [CrossRef]
  13. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
    [CrossRef]
  14. I. Romero, J. Aizpurua, F. J. García de Abajo, and G. W. Bryant, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
    [CrossRef] [PubMed]
  15. J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
    [CrossRef] [PubMed]
  16. M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics 3, 287–291 (2009).
    [CrossRef]
  17. O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
    [CrossRef] [PubMed]
  18. O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer (CTP) and bonding dimer (BDP) plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
    [CrossRef]
  19. R. Esteban, A.G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Communications 3, 825 (2012).
    [CrossRef] [PubMed]
  20. D.C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
    [CrossRef] [PubMed]
  21. K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
    [CrossRef] [PubMed]
  22. J.A. Scholl, A. García-Etxarri, A. L. Koh, and J.A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
    [CrossRef]
  23. L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett. 6, 458–462, (2006).
    [CrossRef] [PubMed]
  24. J. Bellesa, C. Bonnand, J.C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
    [CrossRef]
  25. G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
    [CrossRef] [PubMed]
  26. N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett. 8, 3481–3487 (2008).
    [CrossRef] [PubMed]
  27. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
    [CrossRef]
  28. M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108, 106402 (2012).
    [CrossRef] [PubMed]
  29. A. Manjavacas, F.J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
    [CrossRef] [PubMed]
  30. L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [CrossRef] [PubMed]
  31. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
    [CrossRef] [PubMed]
  32. J.M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science 301, 1884–1886 (2003).
    [CrossRef] [PubMed]
  33. E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
    [CrossRef]
  34. F. López-Tejeira, R. Paniagua-Domínguez, and J. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6, 8989–8996 (2012).
    [CrossRef] [PubMed]
  35. F.J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
    [CrossRef]
  36. P.B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  37. M. Dressel and G. Grüner, Electrodynamics of solids (Cambridge University Press, U.K., 2002).
    [CrossRef]
  38. K.E. Oughstun and N.A. Cartwright, “On the Lorentz-Lorentz formula and the Lorentz model of dielectric dispersion,” Optics Express 11, 1541–1546 (2003).
    [CrossRef]
  39. O. Pérez-González, Optical properties and high-frequency electron transport in plasmonic cavities, PhD Thesis, (University of the Basque Country, UPV-EHU, 2011).
  40. N. Zabala, O. Pérez-González, P. Nordlander, and J. Aizpurua, “Coupling of nanoparticle plasmons with molecular linkers,” Proc. of SPIE 8096,  80961L (2011).
    [CrossRef]
  41. J. J. Sánchez-Mondragón, N. B. Naroznhy, and J. H. Eberly, “Theory of spontaneous-emission line shape in an ideal cavity,” Phys. Rev. Lett. 51, 550–553 (1983).
    [CrossRef]
  42. G.S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1732–1734 (1984).
    [CrossRef]
  43. S. Rudin and T.L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B 59, 10227–10233 (1999).
    [CrossRef]
  44. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
    [CrossRef] [PubMed]

2013 (1)

J.A. Scholl, A. García-Etxarri, A. L. Koh, and J.A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[CrossRef]

2012 (5)

R. Esteban, A.G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Communications 3, 825 (2012).
[CrossRef] [PubMed]

D.C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108, 106402 (2012).
[CrossRef] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6, 8989–8996 (2012).
[CrossRef] [PubMed]

2011 (4)

A. Manjavacas, F.J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef] [PubMed]

N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer (CTP) and bonding dimer (BDP) plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[CrossRef]

N. Zabala, O. Pérez-González, P. Nordlander, and J. Aizpurua, “Coupling of nanoparticle plasmons with molecular linkers,” Proc. of SPIE 8096,  80961L (2011).
[CrossRef]

2010 (6)

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
[CrossRef] [PubMed]

O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef] [PubMed]

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Materials 9, 205–213 (2010).
[CrossRef]

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[CrossRef] [PubMed]

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[CrossRef]

2009 (2)

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics 3, 287–291 (2009).
[CrossRef]

2008 (3)

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticle plasmonics,” Laser & Photon. Rev. 2, 136–159 (2008).
[CrossRef]

N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

2007 (3)

G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

2006 (3)

I. Romero, J. Aizpurua, F. J. García de Abajo, and G. W. Bryant, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef] [PubMed]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef] [PubMed]

L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett. 6, 458–462, (2006).
[CrossRef] [PubMed]

2005 (1)

L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Bellesa, C. Bonnand, J.C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

2003 (4)

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with Zeptomole sensitivity,” Nano Lett. 3, 1057–1062, (2003).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

J.M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science 301, 1884–1886 (2003).
[CrossRef] [PubMed]

K.E. Oughstun and N.A. Cartwright, “On the Lorentz-Lorentz formula and the Lorentz model of dielectric dispersion,” Optics Express 11, 1541–1546 (2003).
[CrossRef]

2002 (2)

F.J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
[CrossRef] [PubMed]

2000 (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

1999 (1)

S. Rudin and T.L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B 59, 10227–10233 (1999).
[CrossRef]

1984 (1)

G.S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1732–1734 (1984).
[CrossRef]

1983 (1)

J. J. Sánchez-Mondragón, N. B. Naroznhy, and J. H. Eberly, “Theory of spontaneous-emission line shape in an ideal cavity,” Phys. Rev. Lett. 51, 550–553 (1983).
[CrossRef]

1972 (1)

P.B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Agarwal, G.S.

G.S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1732–1734 (1984).
[CrossRef]

Aizpurua, J.

R. Esteban, A.G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Communications 3, 825 (2012).
[CrossRef] [PubMed]

D.C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer (CTP) and bonding dimer (BDP) plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[CrossRef]

N. Zabala, O. Pérez-González, P. Nordlander, and J. Aizpurua, “Coupling of nanoparticle plasmons with molecular linkers,” Proc. of SPIE 8096,  80961L (2011).
[CrossRef]

O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef] [PubMed]

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[CrossRef] [PubMed]

M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics 3, 287–291 (2009).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticle plasmonics,” Laser & Photon. Rev. 2, 136–159 (2008).
[CrossRef]

I. Romero, J. Aizpurua, F. J. García de Abajo, and G. W. Bryant, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Akin, D.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Akjouj, A.

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Atay, T.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

Atkinson, R.

G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[CrossRef] [PubMed]

Atwater, H.

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Materials 9, 205–213 (2010).
[CrossRef]

Badve, S.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Bardhan, R.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Bashir, R.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Baumberg, J.J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

Beck, M.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108, 106402 (2012).
[CrossRef] [PubMed]

Bellesa, J.

J. Bellesa, C. Bonnand, J.C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef]

Bonnand, C.

J. Bellesa, C. Bonnand, J.C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef]

Borisov, A.

O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef] [PubMed]

Borisov, A. G.

D.C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef] [PubMed]

Borisov, A.G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

R. Esteban, A.G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Communications 3, 825 (2012).
[CrossRef] [PubMed]

Boukherroub, R.

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

Brandl, D. W.

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

Bryant, G. W.

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticle plasmonics,” Laser & Photon. Rev. 2, 136–159 (2008).
[CrossRef]

I. Romero, J. Aizpurua, F. J. García de Abajo, and G. W. Bryant, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Cartwright, N.A.

K.E. Oughstun and N.A. Cartwright, “On the Lorentz-Lorentz formula and the Lorentz model of dielectric dispersion,” Optics Express 11, 1541–1546 (2003).
[CrossRef]

Castellano, F.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108, 106402 (2012).
[CrossRef] [PubMed]

Chang, S. H.

L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

Chang, W.S.

N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

Choi, M. R.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Christy, R. W.

P.B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Clare, S.E.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Crozier, K.

M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics 3, 287–291 (2009).
[CrossRef]

Davis, T. J.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[CrossRef]

Dionne, J.A.

J.A. Scholl, A. García-Etxarri, A. L. Koh, and J.A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[CrossRef]

Djafari-Rouhani, B.

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

Dressel, M.

M. Dressel and G. Grüner, Electrodynamics of solids (Cambridge University Press, U.K., 2002).
[CrossRef]

Dyckson, W.

G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[CrossRef] [PubMed]

Eberly, J. H.

J. J. Sánchez-Mondragón, N. B. Naroznhy, and J. H. Eberly, “Theory of spontaneous-emission line shape in an ideal cavity,” Phys. Rev. Lett. 51, 550–553 (1983).
[CrossRef]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

R. Esteban, A.G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Communications 3, 825 (2012).
[CrossRef] [PubMed]

Evans, P.R.

G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[CrossRef] [PubMed]

Faist, J.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108, 106402 (2012).
[CrossRef] [PubMed]

Fang, L.

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

Flood, A. H.

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

Fofang, N.T.

N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Galopin, E.

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

García de Abajo, F. J.

I. Romero, J. Aizpurua, F. J. García de Abajo, and G. W. Bryant, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

García de Abajo, F.J.

A. Manjavacas, F.J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef] [PubMed]

F.J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

García-Etxarri, A.

J.A. Scholl, A. García-Etxarri, A. L. Koh, and J.A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[CrossRef]

M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics 3, 287–291 (2009).
[CrossRef]

Geiser, M.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108, 106402 (2012).
[CrossRef] [PubMed]

Gómez, D. E.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[CrossRef]

Gray, S. K.

Grüner, G.

M. Dressel and G. Grüner, Electrodynamics of solids (Cambridge University Press, U.K., 2002).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
[CrossRef] [PubMed]

Hafner, J. H.

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef] [PubMed]

Halas, N. J.

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Halas, N.J.

N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef] [PubMed]

N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

Hendren, W.

G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[CrossRef] [PubMed]

Hernández, L. I.

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

Hillenbrand, R.

M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics 3, 287–291 (2009).
[CrossRef]

Howie, A.

F.J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

Huang, T. J.

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

Huber, A.

M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics 3, 287–291 (2009).
[CrossRef]

Hybertsen, M. S.

L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett. 6, 458–462, (2006).
[CrossRef] [PubMed]

Jensen, L.

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

Johnson, P.B.

P.B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Juluri, B. K.

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Kazansky, A. K.

D.C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef] [PubMed]

Klare, J. E.

L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett. 6, 458–462, (2006).
[CrossRef] [PubMed]

Koh, A. L.

J.A. Scholl, A. García-Etxarri, A. L. Koh, and J.A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[CrossRef]

Lal, S.

N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Lassiter, J. B.

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

Levin, C. S.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Liao, H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef] [PubMed]

Link, S.

N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

López-Tejeira, F.

F. López-Tejeira, R. Paniagua-Domínguez, and J. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6, 8989–8996 (2012).
[CrossRef] [PubMed]

Manjavacas, A.

A. Manjavacas, F.J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef] [PubMed]

Marinica, D.C.

D.C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef] [PubMed]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with Zeptomole sensitivity,” Nano Lett. 3, 1057–1062, (2003).
[CrossRef]

Mirin, N.A.

N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Mirkin, C. A.

J.M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science 301, 1884–1886 (2003).
[CrossRef] [PubMed]

Mugnier, J.

J. Bellesa, C. Bonnand, J.C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef]

Mulvaney, P.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[CrossRef]

Nam, J.M.

J.M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science 301, 1884–1886 (2003).
[CrossRef] [PubMed]

Naroznhy, N. B.

J. J. Sánchez-Mondragón, N. B. Naroznhy, and J. H. Eberly, “Theory of spontaneous-emission line shape in an ideal cavity,” Phys. Rev. Lett. 51, 550–553 (1983).
[CrossRef]

Nehl, C. L.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef] [PubMed]

Neumann, O.

N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Nevou, L.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108, 106402 (2012).
[CrossRef] [PubMed]

Niedziólka-Jönsson, J.

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

Nordlander, P.

R. Esteban, A.G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Communications 3, 825 (2012).
[CrossRef] [PubMed]

D.C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef] [PubMed]

A. Manjavacas, F.J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef] [PubMed]

N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

N. Zabala, O. Pérez-González, P. Nordlander, and J. Aizpurua, “Coupling of nanoparticle plasmons with molecular linkers,” Proc. of SPIE 8096,  80961L (2011).
[CrossRef]

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[CrossRef] [PubMed]

O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef] [PubMed]

N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Noual, A.

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

Nuckolls, C.

L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett. 6, 458–462, (2006).
[CrossRef] [PubMed]

Nurmikko, A. V.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Oughstun, K.E.

K.E. Oughstun and N.A. Cartwright, “On the Lorentz-Lorentz formula and the Lorentz model of dielectric dispersion,” Optics Express 11, 1541–1546 (2003).
[CrossRef]

Paniagua-Domínguez, R.

F. López-Tejeira, R. Paniagua-Domínguez, and J. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6, 8989–8996 (2012).
[CrossRef] [PubMed]

Park, T.

N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Pelton, M.

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
[CrossRef] [PubMed]

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticle plasmonics,” Laser & Photon. Rev. 2, 136–159 (2008).
[CrossRef]

Pennec, Y.

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

Pérez-González, O.

N. Zabala, O. Pérez-González, P. Nordlander, and J. Aizpurua, “Coupling of nanoparticle plasmons with molecular linkers,” Proc. of SPIE 8096,  80961L (2011).
[CrossRef]

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer (CTP) and bonding dimer (BDP) plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[CrossRef]

O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef] [PubMed]

O. Pérez-González, Optical properties and high-frequency electron transport in plasmonic cavities, PhD Thesis, (University of the Basque Country, UPV-EHU, 2011).

Plenet, J.C.

J. Bellesa, C. Bonnand, J.C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef]

Pollard, R.J.

G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[CrossRef] [PubMed]

Polman, A.

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Materials 9, 205–213 (2010).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Reinecke, T.L.

S. Rudin and T.L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B 59, 10227–10233 (1999).
[CrossRef]

Reyes-Coronado, A.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[CrossRef] [PubMed]

Robinson, J. P.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Romero, I.

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, F. J. García de Abajo, and G. W. Bryant, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef] [PubMed]

Rudin, S.

S. Rudin and T.L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B 59, 10227–10233 (1999).
[CrossRef]

Sánchez-Gil, J.

F. López-Tejeira, R. Paniagua-Domínguez, and J. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6, 8989–8996 (2012).
[CrossRef] [PubMed]

Sánchez-Mondragón, J. J.

J. J. Sánchez-Mondragón, N. B. Naroznhy, and J. H. Eberly, “Theory of spontaneous-emission line shape in an ideal cavity,” Phys. Rev. Lett. 51, 550–553 (1983).
[CrossRef]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

Scalari, G.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108, 106402 (2012).
[CrossRef] [PubMed]

Schatz, G. C.

L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics 3, 287–291 (2009).
[CrossRef]

Scholl, J.A.

J.A. Scholl, A. García-Etxarri, A. L. Koh, and J.A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[CrossRef]

Sherry, L. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

Song, J. H.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

Stanley, J. K.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Stanton-Maxey, K. J.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Steigerwald, M. L.

L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett. 6, 458–462, (2006).
[CrossRef] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Stoddart, J. F.

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

Sturgis, J.

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Szunerits, S.

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

Tam, I. W.

L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett. 6, 458–462, (2006).
[CrossRef] [PubMed]

Thaxton, C. S.

J.M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science 301, 1884–1886 (2003).
[CrossRef] [PubMed]

Van Duyne, R. P.

L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with Zeptomole sensitivity,” Nano Lett. 3, 1057–1062, (2003).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
[CrossRef] [PubMed]

Venkataraman, L.

L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett. 6, 458–462, (2006).
[CrossRef] [PubMed]

Vernon, K. C.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[CrossRef]

Wei, H.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[CrossRef] [PubMed]

Weiss, P. S.

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

Wu, X.

Wurtz, G.A.

G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[CrossRef] [PubMed]

Xu, H.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[CrossRef] [PubMed]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Yang, Y.

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

Zabala, N.

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer (CTP) and bonding dimer (BDP) plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[CrossRef]

N. Zabala, O. Pérez-González, P. Nordlander, and J. Aizpurua, “Coupling of nanoparticle plasmons with molecular linkers,” Proc. of SPIE 8096,  80961L (2011).
[CrossRef]

O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef] [PubMed]

Zayats, A. V.

G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[CrossRef] [PubMed]

Zheng, Y. B.

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

ACS Nano (2)

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[CrossRef] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6, 8989–8996 (2012).
[CrossRef] [PubMed]

Chem. Rev. (1)

N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C,  11411769–11775 (2010).
[CrossRef]

Laser & Photon. Rev. (1)

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticle plasmonics,” Laser & Photon. Rev. 2, 136–159 (2008).
[CrossRef]

Nano Lett. (16)

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with Zeptomole sensitivity,” Nano Lett. 3, 1057–1062, (2003).
[CrossRef]

M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7, 3759–3765 (2007).
[CrossRef] [PubMed]

Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9, 819–825 (2009).
[CrossRef] [PubMed]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef] [PubMed]

O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef] [PubMed]

A. Manjavacas, F.J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

D.C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef] [PubMed]

J.A. Scholl, A. García-Etxarri, A. L. Koh, and J.A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[CrossRef]

L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett. 6, 458–462, (2006).
[CrossRef] [PubMed]

G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[CrossRef] [PubMed]

N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[CrossRef]

Nat. Materials (1)

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Materials 9, 205–213 (2010).
[CrossRef]

Nat. Photonics (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics 3, 287–291 (2009).
[CrossRef]

Nature (1)

K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

Nature Communications (1)

R. Esteban, A.G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Communications 3, 825 (2012).
[CrossRef] [PubMed]

New J. Phys. (1)

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer (CTP) and bonding dimer (BDP) plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[CrossRef]

Opt. Express (2)

Optics Express (1)

K.E. Oughstun and N.A. Cartwright, “On the Lorentz-Lorentz formula and the Lorentz model of dielectric dispersion,” Optics Express 11, 1541–1546 (2003).
[CrossRef]

Phys. Rev. B (3)

S. Rudin and T.L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B 59, 10227–10233 (1999).
[CrossRef]

F.J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

P.B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Phys. Rev. Lett. (5)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

J. Bellesa, C. Bonnand, J.C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108, 106402 (2012).
[CrossRef] [PubMed]

J. J. Sánchez-Mondragón, N. B. Naroznhy, and J. H. Eberly, “Theory of spontaneous-emission line shape in an ideal cavity,” Phys. Rev. Lett. 51, 550–553 (1983).
[CrossRef]

G.S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1732–1734 (1984).
[CrossRef]

Proc. of SPIE (1)

N. Zabala, O. Pérez-González, P. Nordlander, and J. Aizpurua, “Coupling of nanoparticle plasmons with molecular linkers,” Proc. of SPIE 8096,  80961L (2011).
[CrossRef]

Science (1)

J.M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science 301, 1884–1886 (2003).
[CrossRef] [PubMed]

Other (2)

M. Dressel and G. Grüner, Electrodynamics of solids (Cambridge University Press, U.K., 2002).
[CrossRef]

O. Pérez-González, Optical properties and high-frequency electron transport in plasmonic cavities, PhD Thesis, (University of the Basque Country, UPV-EHU, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic representation of a gold nanoparticle dimer connected by a molecular linker modelled as a cylinder of radius a and length d. The radius of the gold nanoparticles is R = 50 nm and the minimum separation distance between them is d = 1 nm (proportionality is not respected in this sketch). k is the wave vector of the incident electromagnetic plane wave with polarization of the electric field E along the vertical symmetry axis of the system. (b) Resonant behaviour of the conductance G for molecular linkers of radii a = 1 nm, 5 nm and 10 nm represented by the dielectric function of Eq. (1) with parameters Eex = ħωex = 1.51 eV, f = 1.5 and γex = 0.1 eV. (c) Calculated normalised optical extinction cross-section of a gold nanoparticle dimer bridged by a gold linker as a function of its radius a, and therefore as a function of conductance G as well. GCTP is the conductance threshold of the cavity load for the emergence of the CTP mode, as given by Eq. (3). (d) Analogous calculations as in (c), but with a molecular load described by a Drude-Lorentz dielectric function using the same parameters as in (b).

Fig. 2
Fig. 2

Calculated normalised optical extinction cross-section of a gold nanoparticle dimer bridged by a molecular linker filling the interparticle separation of d = 1 nm with fixed size characterized by a molecular load radius a, as the energy and the oscillator strength of the excitonic transition in the cavity is varied. (a) a = 1 nm, (b) a = 5 nm, (c) a = 10 nm and (d) a = 15 nm. The white, solid lines included indicate the following: Ex the exciton energy line, BDP and BQP the energy lines of the dipolar and quadrupolar bonding plasmon modes when there is no linker. Finally, the white, dashed lines E B D P +, E B D P , E B Q P + and E B Q P indicate the energies of the coupled modes derived from Eq. (4).

Fig. 3
Fig. 3

(a) Calculated normalised optical extinction cross-section of a gold nanoparticle dimer with a minimum separation distance between the particles d = 1 nm, as the dielectric embedding constant εd is varied. (b) Calculated normalised optical extinction cross-section of a gold nanoparticle dimer bridged by a molecular linker with length d = 1 nm, load radius a = 3 nm and excitation energy Eex = 1.24 eV (λex = 1000 nm), as the dielectric embedding constant εd is varied. (c) Shift of the BDP, BDP+ and BDP modes in Figs. 3 (a) and (b) as a function of the dielectric constant of the embedding medium. (d) Variation of the relative intensity of the BDP+ and BDP modes in (b) as a function of the dielectric constant of the embedding medium.

Fig. 4
Fig. 4

(a) Calculated normalised optical extinction cross-section of a gold nanoparticle dimer bridged by a molecular linker, with length d = 1 nm, load radius a = 10 nm and excitation energy Eex = 0.5 eV (λex = 2480 nm), as the dielectric embedding constant εd is varied. (b) Shift of the BDP and CTP modes in Fig. 3 (a) as a function of the dielectric constant of the embedding medium. (c) Linear plot of the CTP shifts vs. refractive index of the embedding medium.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε l ( ω ) = 1 f ω e x 2 ( ω 2 ω e x 2 ) + i ω γ e x ,
G ( ω ) = κ 1 ( ω ) π { R 2 a 2 R + ( d / 2 + R ) ln [ 1 + 2 ( R R 2 a 2 ) / d ] } .
G C T P = ω C T P R 2 / 4 π d .
E ± = E P + E e x 2 ± [ ( Ω R 2 ) 2 + 1 4 ( E P E e x ) 2 ] 1 / 2 ,
F O M = m ( e V / R I U ) / f w h m ( e V ) .

Metrics