Abstract

In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. The coupling efficiency as a function of the wall thickness was studied experimentally. WGM resonance with a Q-factor of 1.14 × 104 was observed using a borosilicate glass microsphere with a diameter of 71 μm. The coupler operates in the reflection mode and provides a robust mechanical support to the microsphere resonator. It is expected that the new coupler may find broad applications in sensors, optical filters and lasers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
    [CrossRef]
  2. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  3. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optical coupling to high-Q whispering gallery-modes,” J. Opt. Soc. Am. B16(1), 147 (1999).
    [CrossRef]
  4. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes - Part II: Applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
    [CrossRef]
  5. X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics5(10), 591–597 (2011).
    [CrossRef] [PubMed]
  6. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).
  7. H. Wang, L. Yuan, C. W. Kim, Q. Han, T. Wei, X. Lan, and H. Xiao, “Optical microresonator based on hollow sphere with porous wall for chemical sensing,” Opt. Lett.37(1), 94–96 (2012).
    [CrossRef] [PubMed]
  8. B. E. Little, J. P. Laine, D. R. Lim, H. A. Haus, L. C. Kimerling, and S. T. Chu, “Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits,” Opt. Lett.25(1), 73–75 (2000).
    [CrossRef] [PubMed]
  9. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett.20(7), 654–656 (1995).
    [CrossRef] [PubMed]
  10. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefèvre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett.20(8), 813–815 (1995).
    [CrossRef] [PubMed]
  11. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett.24(11), 723–725 (1999).
    [CrossRef] [PubMed]
  12. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett.22(15), 1129–1131 (1997).
    [CrossRef] [PubMed]
  13. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol.24(3), 1395–1402 (2006).
    [CrossRef]
  14. C. Bray, Dictionary of Glass: Materials and Techniques (University of Pennsylvania Press, 2001).
  15. M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett.85(1), 74–77 (2000).
    [CrossRef] [PubMed]

2012

2011

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

2009

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

2006

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol.24(3), 1395–1402 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes - Part II: Applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

2003

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

2000

B. E. Little, J. P. Laine, D. R. Lim, H. A. Haus, L. C. Kimerling, and S. T. Chu, “Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits,” Opt. Lett.25(1), 73–75 (2000).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

1999

1997

1995

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Arnold, S.

Birks, T. A.

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Chao, C. Y.

Cheung, G.

Chu, S. T.

Dong, C. H.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

Dubreuil, N.

Fan, X.

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

Gaddam, V. R.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

Gorodetsky, M. L.

Griffel, G.

Guo, G. C.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

Guo, L. J.

Han, Q.

Han, Z. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

Hare, J.

Haus, H. A.

He, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes - Part II: Applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optical coupling to high-Q whispering gallery-modes,” J. Opt. Soc. Am. B16(1), 147 (1999).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett.24(11), 723–725 (1999).
[CrossRef] [PubMed]

Jacques, F.

Kim, C. W.

Kimerling, L. C.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Knight, J. C.

Laine, J. P.

Lan, X.

Lefèvre, V.

Leventhal, D. K.

Lim, D. R.

Little, B. E.

Maleki, L.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes - Part II: Applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

Ozdemir, S. K.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Sandoghdar, V.

Serpengüzel, A.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Wang, H.

Wei, T.

White, I. M.

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

Xiao, H.

Xiao, Y. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

Yang, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

Yao, X. S.

Yuan, L.

Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), (2009).

IEEE J. Sel. Top. Quantum Electron.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes - Part II: Applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Other

C. Bray, Dictionary of Glass: Materials and Techniques (University of Pennsylvania Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the fiber pigtailed thin wall capillary coupled whispering gallery modes microresonator and interrogation setup.

Fig. 2
Fig. 2

Microscopic images of the fiber pigtailed thin wall capillary coupler at various fabrication steps. (a) Before and after etching, (b) SEM image of the etched capillary wall with a thickness of about 2 μm, (c) Etched capillary with a microsphere inserted.

Fig. 3
Fig. 3

Measurement of the near-field power distribution of the fiber pigtailed thin wall capillary waveguide. (a) Schematic of the near-field power distribution measurement system, (b) Line-scan power distribution profile.

Fig. 4
Fig. 4

Progress of coupling as a function of etching time. (a) Reflection resonance spectrum at various etching times, (b) Resonance Q-factor and peak intensity as a function of etching time. Inset table, the wall thickness estimated based on etching time.

Fig. 5
Fig. 5

Reflection spectrum of the thin wall capillary coupled microsphere resonator in air, with mode identification numbers. Inset: Zoom-in spectrum of the resonance peak.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n g = λ 1 × λ 2 2πR×FSR

Metrics