Abstract

We report a near-visible parametric wavelength converter comprising a polarization-maintaining photonic crystal fiber (PM-PCF) pumped by a highly versatile diode-seeded master-oscillator power amplifier system based around 1.06 μm. The device is broadly tunable in wavelength (0.74–0.81 μm), pulse duration (0.2–1.5 ns) and repetition rate (1–30 MHz). A maximum anti-Stokes slope conversion efficiency of 14.9% is achieved with corresponding anti-Stokes average output powers of 845 mW, at a wavelength of 0.775 μm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
    [CrossRef] [PubMed]
  2. A. Chen, G. Wong, S. Murdoch, R. Leonhardt, J. Harvey, J. Knight, W. Wadsworth, and P. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett.30, 762–764 (2005).
    [CrossRef] [PubMed]
  3. J. D. Harvey, S. G. Murdoch, S. Coen, R. Leonhardt, D. Mechin, and G. K. L. Wong, “Parametric processes in microstructured and highly nonlinear fibers,” Opt. Quant. Electron.39, 1103–1114 (2007).
    [CrossRef]
  4. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34, 3499–3501 (2009).
    [CrossRef] [PubMed]
  5. L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fiber laser systems,” Opt. Express18, 16193–16205 (2010).
    [CrossRef] [PubMed]
  6. C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, “High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers,” Opt. Express20, 24957–24965 (2012).
    [CrossRef] [PubMed]
  7. A. Herzog, A. Shamir, and A. A. Ishaaya, “Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers,” Opt. Lett.37, 82–84 (2012).
    [CrossRef] [PubMed]
  8. J. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol.26, 2184–2191 (2008).
    [CrossRef]
  9. R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Synchronously pumped photonic crystal fiber-based optical parametric oscillator,” Opt. Lett.37, 3156–3158 (2012).
    [CrossRef] [PubMed]
  10. G. Van der Westhuizen and J. Nilsson, “All-fiber optical parametric oscillator, pumped by an all-fiber Yb-based MOPA” in Lasers and Electro-Optics (CLEO), 2011 Conference on, (2011), pp. 1–2.
  11. G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion” IEEE J. Quantum Elect.47, 1396–1403 (2011).
    [CrossRef]
  12. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20, 4484–4493 (2012).
    [CrossRef] [PubMed]
  13. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Dez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wavemixing,” Opt. Express20, 21010–21018 (2012).
    [CrossRef] [PubMed]
  14. M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express20, 26583–26595 (2012).
    [CrossRef] [PubMed]
  15. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37, 1652–1654 (2012).
    [CrossRef] [PubMed]
  16. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20, 12004–12013 (2012).
    [CrossRef] [PubMed]
  17. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
    [CrossRef] [PubMed]
  18. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286, 1513–1517 (1999).
    [CrossRef] [PubMed]
  19. J. Chen, G. Wong, S. Murdoch, R. Kruhlak, R. Leonhardt, J. Harvey, N. Joly, and J. Knight, “Cross-phase modulation instability in photonic crystal fibers,” Opt. Lett.31, 873–875 (2006).
    [CrossRef] [PubMed]
  20. R. Kruhlak, G. Wong, J. Chen, S. Murdoch, R. Leonhardt, J. Harvey, N. Joly, and J. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett.31, 1379–1381 (2006).
    [CrossRef] [PubMed]
  21. A. Kudlinski, A. Bendahmane, D. Labat, S. Virally, R. T. Murray, E. J. R. Kelleher, and A. Mussot, “Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber,” Opt. Express21, 8437–8443 (2013).
    [CrossRef] [PubMed]
  22. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation maintaining optical fiber,” Quant. Electron.41, 794–800 (2011).
    [CrossRef]
  23. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29, 1959–1967 (2012).
    [CrossRef]
  24. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express16, 14004–14014 (2008).
    [CrossRef] [PubMed]
  25. A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron.47, 1514–1518 (2011).
    [CrossRef]
  26. Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett.35, 2427–2429 (2010).
    [CrossRef] [PubMed]
  27. A. Mussot, A. Kudlinski, R. Habert, I. Dahman, G. Mlin, L. Galkovsky, A. Fleureau, S. Lempereur, L. Lago, D. Bigourd, T. Sylvestre, M. W. Lee, and E. Hugonnot, “20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 μm using a dispersion-stabilized photonic crystal fiber,” Opt. Express20, 28906–28911 (2012).
    [CrossRef] [PubMed]

2013 (1)

2012 (10)

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20, 4484–4493 (2012).
[CrossRef] [PubMed]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Dez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wavemixing,” Opt. Express20, 21010–21018 (2012).
[CrossRef] [PubMed]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express20, 26583–26595 (2012).
[CrossRef] [PubMed]

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37, 1652–1654 (2012).
[CrossRef] [PubMed]

T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20, 12004–12013 (2012).
[CrossRef] [PubMed]

C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, “High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers,” Opt. Express20, 24957–24965 (2012).
[CrossRef] [PubMed]

A. Herzog, A. Shamir, and A. A. Ishaaya, “Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers,” Opt. Lett.37, 82–84 (2012).
[CrossRef] [PubMed]

R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Synchronously pumped photonic crystal fiber-based optical parametric oscillator,” Opt. Lett.37, 3156–3158 (2012).
[CrossRef] [PubMed]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29, 1959–1967 (2012).
[CrossRef]

A. Mussot, A. Kudlinski, R. Habert, I. Dahman, G. Mlin, L. Galkovsky, A. Fleureau, S. Lempereur, L. Lago, D. Bigourd, T. Sylvestre, M. W. Lee, and E. Hugonnot, “20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 μm using a dispersion-stabilized photonic crystal fiber,” Opt. Express20, 28906–28911 (2012).
[CrossRef] [PubMed]

2011 (4)

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron.47, 1514–1518 (2011).
[CrossRef]

G. Van der Westhuizen and J. Nilsson, “All-fiber optical parametric oscillator, pumped by an all-fiber Yb-based MOPA” in Lasers and Electro-Optics (CLEO), 2011 Conference on, (2011), pp. 1–2.

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion” IEEE J. Quantum Elect.47, 1396–1403 (2011).
[CrossRef]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation maintaining optical fiber,” Quant. Electron.41, 794–800 (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (2)

2007 (1)

J. D. Harvey, S. G. Murdoch, S. Coen, R. Leonhardt, D. Mechin, and G. K. L. Wong, “Parametric processes in microstructured and highly nonlinear fibers,” Opt. Quant. Electron.39, 1103–1114 (2007).
[CrossRef]

2006 (2)

2005 (1)

2003 (2)

1999 (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286, 1513–1517 (1999).
[CrossRef] [PubMed]

Abreu-Afonso, J.

Babin, S. A.

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29, 1959–1967 (2012).
[CrossRef]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation maintaining optical fiber,” Quant. Electron.41, 794–800 (2011).
[CrossRef]

Baumgartl, M.

Bendahmane, A.

Bigourd, D.

Chemnitz, M.

Chen, A.

Chen, J.

Cheung, K. K. Y.

Chui, P. C.

Coen, S.

J. D. Harvey, S. G. Murdoch, S. Coen, R. Leonhardt, D. Mechin, and G. K. L. Wong, “Parametric processes in microstructured and highly nonlinear fibers,” Opt. Quant. Electron.39, 1103–1114 (2007).
[CrossRef]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
[CrossRef] [PubMed]

Dahman, I.

Dez, A.

Dietzek, B.

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286, 1513–1517 (1999).
[CrossRef] [PubMed]

Dupriez, P.

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286, 1513–1517 (1999).
[CrossRef] [PubMed]

Fleureau, A.

Fu, D.

Galkovsky, L.

Gottschall, T.

Habert, R.

Harvey, J.

Harvey, J. D.

J. D. Harvey, S. G. Murdoch, S. Coen, R. Leonhardt, D. Mechin, and G. K. L. Wong, “Parametric processes in microstructured and highly nonlinear fibers,” Opt. Quant. Electron.39, 1103–1114 (2007).
[CrossRef]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
[CrossRef] [PubMed]

Herda, R.

Herzog, A.

Holtom, G. R.

Hugonnot, E.

Ishaaya, A. A.

Jauregui, C.

Joly, N.

Kablukov, S. I.

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29, 1959–1967 (2012).
[CrossRef]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation maintaining optical fiber,” Quant. Electron.41, 794–800 (2011).
[CrossRef]

Kelleher, E. J. R.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
[CrossRef] [PubMed]

Knight, J.

Knight, J. C.

Kong, L.

Kruhlak, R.

Kudlinski, A.

Labat, D.

Laegsgaard, J.

Lago, L.

Lavoute, L.

Lee, M. W.

Lefrancois, S.

Lempereur, S.

Leonhardt, R.

Li, Q.

Limpert, J.

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express20, 26583–26595 (2012).
[CrossRef] [PubMed]

T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20, 12004–12013 (2012).
[CrossRef] [PubMed]

C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, “High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers,” Opt. Express20, 24957–24965 (2012).
[CrossRef] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20, 4484–4493 (2012).
[CrossRef] [PubMed]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Dez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wavemixing,” Opt. Express20, 21010–21018 (2012).
[CrossRef] [PubMed]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34, 3499–3501 (2009).
[CrossRef] [PubMed]

Liu, X.

Mechin, D.

J. D. Harvey, S. G. Murdoch, S. Coen, R. Leonhardt, D. Mechin, and G. K. L. Wong, “Parametric processes in microstructured and highly nonlinear fibers,” Opt. Quant. Electron.39, 1103–1114 (2007).
[CrossRef]

Meyer, T.

Mlin, G.

Murdoch, S.

Murdoch, S. G.

J. D. Harvey, S. G. Murdoch, S. Coen, R. Leonhardt, D. Mechin, and G. K. L. Wong, “Parametric processes in microstructured and highly nonlinear fibers,” Opt. Quant. Electron.39, 1103–1114 (2007).
[CrossRef]

Murray, R. T.

Mussot, A.

Nilsson, J.

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion” IEEE J. Quantum Elect.47, 1396–1403 (2011).
[CrossRef]

G. Van der Westhuizen and J. Nilsson, “All-fiber optical parametric oscillator, pumped by an all-fiber Yb-based MOPA” in Lasers and Electro-Optics (CLEO), 2011 Conference on, (2011), pp. 1–2.

Nodop, D.

Popov, S. V.

Popp, J.

Rothhardt, J.

Rothhardt, M.

Russell, P.

Russell, P. S.

Sagnier, A.

Schimpf, D.

Schneider, P.

Shamir, A.

Sharping, J.

Steinmetz, A.

Sylvestre, T.

Taylor, J. R.

Tünnermann, A.

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Dez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wavemixing,” Opt. Express20, 21010–21018 (2012).
[CrossRef] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20, 4484–4493 (2012).
[CrossRef] [PubMed]

C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, “High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers,” Opt. Express20, 24957–24965 (2012).
[CrossRef] [PubMed]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express20, 26583–26595 (2012).
[CrossRef] [PubMed]

T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20, 12004–12013 (2012).
[CrossRef] [PubMed]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34, 3499–3501 (2009).
[CrossRef] [PubMed]

Turchinovich, D.

Van der Westhuizen, G.

G. Van der Westhuizen and J. Nilsson, “All-fiber optical parametric oscillator, pumped by an all-fiber Yb-based MOPA” in Lasers and Electro-Optics (CLEO), 2011 Conference on, (2011), pp. 1–2.

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion” IEEE J. Quantum Elect.47, 1396–1403 (2011).
[CrossRef]

Virally, S.

Wadsworth, W.

Wadsworth, W. J.

Wise, F. W.

Wong, G.

Wong, G. K. L.

J. D. Harvey, S. G. Murdoch, S. Coen, R. Leonhardt, D. Mechin, and G. K. L. Wong, “Parametric processes in microstructured and highly nonlinear fibers,” Opt. Quant. Electron.39, 1103–1114 (2007).
[CrossRef]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
[CrossRef] [PubMed]

Wong, K. K. Y.

Xie, X. S.

Yang, S.

Zach, A.

Zhou, Y.

Zlobina, E. A.

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29, 1959–1967 (2012).
[CrossRef]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation maintaining optical fiber,” Quant. Electron.41, 794–800 (2011).
[CrossRef]

IEEE J. Quantum Elect. (1)

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion” IEEE J. Quantum Elect.47, 1396–1403 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron.47, 1514–1518 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Lasers and Electro-Optics (CLEO), 2011 Conference on (1)

G. Van der Westhuizen and J. Nilsson, “All-fiber optical parametric oscillator, pumped by an all-fiber Yb-based MOPA” in Lasers and Electro-Optics (CLEO), 2011 Conference on, (2011), pp. 1–2.

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
[CrossRef] [PubMed]

Opt. Express (9)

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express16, 14004–14014 (2008).
[CrossRef] [PubMed]

L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fiber laser systems,” Opt. Express18, 16193–16205 (2010).
[CrossRef] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20, 4484–4493 (2012).
[CrossRef] [PubMed]

T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20, 12004–12013 (2012).
[CrossRef] [PubMed]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Dez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wavemixing,” Opt. Express20, 21010–21018 (2012).
[CrossRef] [PubMed]

C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, “High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers,” Opt. Express20, 24957–24965 (2012).
[CrossRef] [PubMed]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express20, 26583–26595 (2012).
[CrossRef] [PubMed]

A. Mussot, A. Kudlinski, R. Habert, I. Dahman, G. Mlin, L. Galkovsky, A. Fleureau, S. Lempereur, L. Lago, D. Bigourd, T. Sylvestre, M. W. Lee, and E. Hugonnot, “20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 μm using a dispersion-stabilized photonic crystal fiber,” Opt. Express20, 28906–28911 (2012).
[CrossRef] [PubMed]

A. Kudlinski, A. Bendahmane, D. Labat, S. Virally, R. T. Murray, E. J. R. Kelleher, and A. Mussot, “Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber,” Opt. Express21, 8437–8443 (2013).
[CrossRef] [PubMed]

Opt. Lett. (9)

R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Synchronously pumped photonic crystal fiber-based optical parametric oscillator,” Opt. Lett.37, 3156–3158 (2012).
[CrossRef] [PubMed]

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37, 1652–1654 (2012).
[CrossRef] [PubMed]

A. Herzog, A. Shamir, and A. A. Ishaaya, “Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers,” Opt. Lett.37, 82–84 (2012).
[CrossRef] [PubMed]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34, 3499–3501 (2009).
[CrossRef] [PubMed]

Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett.35, 2427–2429 (2010).
[CrossRef] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
[CrossRef] [PubMed]

A. Chen, G. Wong, S. Murdoch, R. Leonhardt, J. Harvey, J. Knight, W. Wadsworth, and P. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett.30, 762–764 (2005).
[CrossRef] [PubMed]

J. Chen, G. Wong, S. Murdoch, R. Kruhlak, R. Leonhardt, J. Harvey, N. Joly, and J. Knight, “Cross-phase modulation instability in photonic crystal fibers,” Opt. Lett.31, 873–875 (2006).
[CrossRef] [PubMed]

R. Kruhlak, G. Wong, J. Chen, S. Murdoch, R. Leonhardt, J. Harvey, N. Joly, and J. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett.31, 1379–1381 (2006).
[CrossRef] [PubMed]

Opt. Quant. Electron. (1)

J. D. Harvey, S. G. Murdoch, S. Coen, R. Leonhardt, D. Mechin, and G. K. L. Wong, “Parametric processes in microstructured and highly nonlinear fibers,” Opt. Quant. Electron.39, 1103–1114 (2007).
[CrossRef]

Quant. Electron. (1)

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation maintaining optical fiber,” Quant. Electron.41, 794–800 (2011).
[CrossRef]

Science (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286, 1513–1517 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Versatile pump source used for subsequent parametric wavelength conversion; LD -semiconductor amplifier, PC - polarization controller, TBFG - tunable fiber Bragg grating, MZAM - Mach-Zehnder amplitude modulator, TAP - fiber tap coupler, YDFA 1(2) - ytterbium doped fiber amplifier 1(2), TBPF - tunable band pass filter, COLL - collimator head, Q(H)WP - quarter(half) waveplate, ISO - isolator.

Fig. 2
Fig. 2

Time and spectral domain pump source characteristics. (a) Wavelength tuning of the seed oscillator. (b) Temporal tuning of the seed oscillator. (c) Wavelength tuning of the amplified seed oscillator, at average output powers of 20 W.

Fig. 3
Fig. 3

(a) Scalar phasematching diagram for PM-PCF. Inset shows zoomed in section around 1.06 um, black points show the experimentally measured points as in section 3.2. (b) Associated SEM image of fiber end.

Fig. 4
Fig. 4

Anti-Stokes spectral output of the device, pumping with 0.3 ns pulses at 20 MHz. (a) Highly tunable spectral output - blue is axis 1 and red axis 2. (b) Pump self phase modulation induced parametric broadening effects. Legend shows the anti-Stokes output power. Inset shows amplified pump before (grey) and after (black) propagation through the PM-PCF.

Fig. 5
Fig. 5

(a) Anti-Stokes output power slope efficiency curves. (b) Tuning of anti-stokes pulse duration.

Metrics