Abstract

Several state-of-the-art imaging applications require a large operational spectral band, a large field size, and a high numerical aperture (NA). The design of a lens that simultaneously meets these requirements is a challenging task. We present optical designs of hyper NA imaging systems that comprise a multi reflection optical element. Light entering this element reflects multiple times before exiting. The present lens designs are 1.65 NA imaging system that operate in the broad spectral band [486.1 ~656.3 nm], have field size of 1.75 mm, and 20X magnification.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Shafer, J. Armstrong, and Y. Chuang, “Small ultra-high NA catadioptric objective using aspheric surfaces,” U.S. patent 7869121 B2, 2011.
  2. Y. Chuang, D. Shafer, and J. Armstrong, “Small ultra-high Catadioptric objective,” U.S. patent 7646533 B2, 2010.
  3. J. Armstrong, “Catadioptric microscope objective employing immersion liquid for use in broad band microscopy,” U.S. Patent 7884998, 2011.
  4. J. Armstrong, Y. Chuang, and D. Shafer, “Catadioptric imaging system exhibiting enhanced deep ultraviolet spectral bandwidth,” U.S. patent 7672043 B2, 2010.
  5. D.  Shafer, “Doing more with less,” Proc. SPIE 2537, 2–12 (1995).
    [CrossRef]
  6. D. Shafer and C. Aresco, “High magnification reflecting microscope objective having a dual magnification mode and zoom magnification capability,” U.S. patent 4863253, 1989.
  7. A Dodoc, “Catadioptric projection objective with ultra high NA,” W.O. 2008101676, 2008 .
  8. D.  Shafer, Y.  Chuang, J.  Armstrong, “Small catadioptric microscope optics,” Proc. SPIE 5523, 12–18 (2004).
    [CrossRef]
  9. W. Smith, Modern Lens Design, 2nd edition (McGraw – Hill, 2004).
  10. C.  Burch, “Reflecting microscopes,” Proc. Phys. Soc. 59(1), 41–46, 46-2 (1947).
    [CrossRef]

2004 (1)

D.  Shafer, Y.  Chuang, J.  Armstrong, “Small catadioptric microscope optics,” Proc. SPIE 5523, 12–18 (2004).
[CrossRef]

1995 (1)

D.  Shafer, “Doing more with less,” Proc. SPIE 2537, 2–12 (1995).
[CrossRef]

1947 (1)

C.  Burch, “Reflecting microscopes,” Proc. Phys. Soc. 59(1), 41–46, 46-2 (1947).
[CrossRef]

Armstrong, J.

D.  Shafer, Y.  Chuang, J.  Armstrong, “Small catadioptric microscope optics,” Proc. SPIE 5523, 12–18 (2004).
[CrossRef]

Burch, C.

C.  Burch, “Reflecting microscopes,” Proc. Phys. Soc. 59(1), 41–46, 46-2 (1947).
[CrossRef]

Chuang, Y.

D.  Shafer, Y.  Chuang, J.  Armstrong, “Small catadioptric microscope optics,” Proc. SPIE 5523, 12–18 (2004).
[CrossRef]

Shafer, D.

D.  Shafer, Y.  Chuang, J.  Armstrong, “Small catadioptric microscope optics,” Proc. SPIE 5523, 12–18 (2004).
[CrossRef]

D.  Shafer, “Doing more with less,” Proc. SPIE 2537, 2–12 (1995).
[CrossRef]

Proc. Phys. Soc. (1)

C.  Burch, “Reflecting microscopes,” Proc. Phys. Soc. 59(1), 41–46, 46-2 (1947).
[CrossRef]

Proc. SPIE (2)

D.  Shafer, “Doing more with less,” Proc. SPIE 2537, 2–12 (1995).
[CrossRef]

D.  Shafer, Y.  Chuang, J.  Armstrong, “Small catadioptric microscope optics,” Proc. SPIE 5523, 12–18 (2004).
[CrossRef]

Other (7)

W. Smith, Modern Lens Design, 2nd edition (McGraw – Hill, 2004).

D. Shafer and C. Aresco, “High magnification reflecting microscope objective having a dual magnification mode and zoom magnification capability,” U.S. patent 4863253, 1989.

A Dodoc, “Catadioptric projection objective with ultra high NA,” W.O. 2008101676, 2008 .

D. Shafer, J. Armstrong, and Y. Chuang, “Small ultra-high NA catadioptric objective using aspheric surfaces,” U.S. patent 7869121 B2, 2011.

Y. Chuang, D. Shafer, and J. Armstrong, “Small ultra-high Catadioptric objective,” U.S. patent 7646533 B2, 2010.

J. Armstrong, “Catadioptric microscope objective employing immersion liquid for use in broad band microscopy,” U.S. Patent 7884998, 2011.

J. Armstrong, Y. Chuang, and D. Shafer, “Catadioptric imaging system exhibiting enhanced deep ultraviolet spectral bandwidth,” U.S. patent 7672043 B2, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the glass shell.

Fig. 2
Fig. 2

Marginal ray angle, after reflection off flat mirror is greater than the critical angle when (a) image plane is set at the primary mirror vertex and slightly smaller than the critical angle when (b) image plane is shifted.

Fig. 3
Fig. 3

(a) Solid shell paraxial magnification versus secondary mirror power. (b) Petzval curvature variation with secondary mirror power.

Fig. 4
Fig. 4

Hyper NA imaging system designs. (a) Design 1 doesn’t use MRE. Designs (b) 2 and (c) 3 uses MRE.

Fig. 5
Fig. 5

Petzval radius of curvature versus obscuration (k) and object working distance (WO).

Fig. 6
Fig. 6

2, 4, and 6 reflections MRE.

Fig. 7
Fig. 7

2, 4, and 6 reflections MRE (a) obscuration and (b) Petzval radius of curvature versus central thickness.

Fig. 8
Fig. 8

Polychromatic RMS wave front error versus field.

Tables (1)

Tables Icon

Table 1 Designs 1, 2, and 3 specifications.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R 1 = 2 t 1 k o ( t o + t 1 ) t o ( 1 k o )2 k o t 1
R 2 = 2( t 2 + t 1 ) 1 k o t o ( t 2 + t 1 )( ϕ 1 ( t o + t 1 )1 )
t o = k o t o 1 M o
k o = sin( θ ap ) sin( θ m )

Metrics