Abstract

A direct UV grating writing technique based on phase-controlled interferometry is proposed and demonstrated in a silica-on-silicon platform, with a wider wavelength detuning range than any previously reported UV writing technology. Electro-optic phase modulation of one beam in the interferometer is used to manipulate the fringe pattern and thus control the parameters of the Bragg gratings and waveguides. Various grating structures with refractive index apodization, phase shifts and index contrasts of up to 0.8 × 10−3have been demonstrated. The method offers significant time/energy efficiency as well as simplified optical layout and fabrication process. We have shown Bragg gratings can be made from 1200nm to 1900nm exclusively under software control and the maximum peak grating reflectivity only decreases by 3dBover a 250 nm (~32THz) bandwidth.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  2. K. Okamoto, Fundamentals of Optical Waveguides(Academic, 2006).
  3. T. Storgaard-Larsen, S. Bouwstra, and O. Leistiko, “Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,”Sens. Actuator A.52(1–3), 25–32 (1996).
    [CrossRef]
  4. J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).
  5. M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett.30(17), 1401–1403 (1994).
    [CrossRef]
  6. G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
    [CrossRef]
  7. G.D. Emmerson, C.B. Gawith, R. B. Williams, and P.G.R. Smith, “Ultra-wide detuning through direct grating writing of planar Bragg structures,” OSA Topical meeting On Bragg Gratings, Photosensitivity and Poling, OSA Tech. Digest Series, 181–183 (2003).
  8. I. Petermann, B. Sahlgren, S. Helmfrid, A. T. Friberg, and P. Y. Fonjallaz, “Fabrication of advanced fiber Bragg gratings by use of sequential writing with a continuous-wave ultraviolet laser source,” Appl. Opt.41(6), 1051–1056 (2002).
    [CrossRef] [PubMed]
  9. Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng.43(8), 1916–1922 (2004).
    [CrossRef]
  10. M. Gagné, L. Bojor, R. Maciejko, and R. Kashyap, “Novel custom fiber Bragg grating fabrication technique based on push-pull phase shifting interferometry,” Opt. Express16(26), 21550–21557 (2008).
    [CrossRef] [PubMed]
  11. K. M. Chung, L. Dong, C. Lu, and H. Y. Tam, “Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control,” Opt. Express19(13), 12664–12672 (2011).
    [CrossRef] [PubMed]
  12. D. Stepanov and S. Surve, ” Fabrication of 1D and 2D grating structures,” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFF7.
    [CrossRef]
  13. D. Stepanov and M. Sceats, “Method and apparatusforwriting gratingstructures using controlled phase delay between beams,” Uni. of Sydney, U.S. Patent Application 12,356,854,(2009).
  14. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett.38(5), 727–729 (2013).
    [CrossRef] [PubMed]
  15. C. Sima, J. C. Gates, B. D. Snow, H. L. Rogers, M. N. Zervas, and P. G. R. Smith, “Simple planar Bragg grating devices for photonic Hilbert transformer,” in proceedings of J. Phys.: Conf. Ser.276012089(Institute of Physics publishing, 2011).
  16. H. Storøy, H. E. Engan, B. Sahlgren, and R. Stubbe, “Position weighting of fiber Bragg gratings for bandpass filtering,” Opt. Lett.22(11), 784–786 (1997).
    [CrossRef] [PubMed]
  17. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
    [CrossRef]

2013 (1)

2011 (1)

2008 (1)

2004 (1)

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng.43(8), 1916–1922 (2004).
[CrossRef]

2002 (2)

G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

I. Petermann, B. Sahlgren, S. Helmfrid, A. T. Friberg, and P. Y. Fonjallaz, “Fabrication of advanced fiber Bragg gratings by use of sequential writing with a continuous-wave ultraviolet laser source,” Appl. Opt.41(6), 1051–1056 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

1997 (2)

1996 (1)

T. Storgaard-Larsen, S. Bouwstra, and O. Leistiko, “Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,”Sens. Actuator A.52(1–3), 25–32 (1996).
[CrossRef]

1995 (1)

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

1994 (1)

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett.30(17), 1401–1403 (1994).
[CrossRef]

Albanis, V.

G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Balslev, S.

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Barcelos, S.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

Bjarklev, A.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett.30(17), 1401–1403 (1994).
[CrossRef]

Bojor, L.

Bouwstra, S.

T. Storgaard-Larsen, S. Bouwstra, and O. Leistiko, “Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,”Sens. Actuator A.52(1–3), 25–32 (1996).
[CrossRef]

Chung, K. M.

Cole, M. J.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

Dong, L.

Dyngaard, M.

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Emmerson, G. D.

G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Engan, H. E.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Feuchter, T.

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Fonjallaz, P. Y.

Friberg, A. T.

Gagné, M.

Gates, J. C.

Gawith, C. B.

G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Gu, C.

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng.43(8), 1916–1922 (2004).
[CrossRef]

Helmfrid, S.

Holmes, C.

Hübner, J.

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Ibsen, M.

G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Jensen, C.

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Kashyap, R.

Kjaer, S. G.

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Laming, R. I.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

Leistiko, O.

T. Storgaard-Larsen, S. Bouwstra, and O. Leistiko, “Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,”Sens. Actuator A.52(1–3), 25–32 (1996).
[CrossRef]

Liu, Y.

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng.43(8), 1916–1922 (2004).
[CrossRef]

Loh, W. H.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

Lu, C.

Maciejko, R.

Mennea, P. L.

Pan, J. J.

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng.43(8), 1916–1922 (2004).
[CrossRef]

Petermann, I.

Poulsen, C. V.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett.30(17), 1401–1403 (1994).
[CrossRef]

Poulsen, O.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett.30(17), 1401–1403 (1994).
[CrossRef]

Rogers, H. L.

Sahlgren, B.

Shen, Y.

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Sima, C.

Smith, P. G. R.

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett.38(5), 727–729 (2013).
[CrossRef] [PubMed]

G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Storgaard-Larsen, T.

T. Storgaard-Larsen, S. Bouwstra, and O. Leistiko, “Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,”Sens. Actuator A.52(1–3), 25–32 (1996).
[CrossRef]

Storøy, H.

Stubbe, R.

Svalgaard, M.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett.30(17), 1401–1403 (1994).
[CrossRef]

Tam, H. Y.

Thomsen, C. L.

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Watts, S. P.

G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Williams, R. B.

G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Zauner, D.

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Zervas, M. N.

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett.38(5), 727–729 (2013).
[CrossRef] [PubMed]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

Zhou, F.

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng.43(8), 1916–1922 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

J. Hübner, S. G. Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, and T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. (Berl.)73(5–6), 435–438 (2001).

Electron. Lett. (3)

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett.30(17), 1401–1403 (1994).
[CrossRef]

G. D. Emmerson, S. P. Watts, C. B. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Opt. Eng. (1)

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng.43(8), 1916–1922 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Sens. Actuator A. (1)

T. Storgaard-Larsen, S. Bouwstra, and O. Leistiko, “Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,”Sens. Actuator A.52(1–3), 25–32 (1996).
[CrossRef]

Other (5)

K. Okamoto, Fundamentals of Optical Waveguides(Academic, 2006).

D. Stepanov and S. Surve, ” Fabrication of 1D and 2D grating structures,” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFF7.
[CrossRef]

D. Stepanov and M. Sceats, “Method and apparatusforwriting gratingstructures using controlled phase delay between beams,” Uni. of Sydney, U.S. Patent Application 12,356,854,(2009).

C. Sima, J. C. Gates, B. D. Snow, H. L. Rogers, M. N. Zervas, and P. G. R. Smith, “Simple planar Bragg grating devices for photonic Hilbert transformer,” in proceedings of J. Phys.: Conf. Ser.276012089(Institute of Physics publishing, 2011).

G.D. Emmerson, C.B. Gawith, R. B. Williams, and P.G.R. Smith, “Ultra-wide detuning through direct grating writing of planar Bragg structures,” OSA Topical meeting On Bragg Gratings, Photosensitivity and Poling, OSA Tech. Digest Series, 181–183 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The experimental setup of the phase modulated direct UV grating writing technique; (b) a 3D illustration of the focused writing spot in the silica-on-silicon sample.

Fig. 2
Fig. 2

Schematic of the sawtooth waveform to drive the EOM for fabricating apodized gratings. T denotes the time interval for one grating period.

Fig. 3
Fig. 3

(a) EOM drive voltage test with uniform gratings (square) and Gaussian apodized gratings (circle); (b) Duty cycle linearity test with 2mm Gaussian apodized gratings.

Fig. 4
Fig. 4

(a) A white-light source image of grating structures in a sample; (b) The reflectivity spectrum of the uniform grating: experimental data (star dot) and modeled data (red line); (c)Gaussian apodized grating; (d) sinc-apodized grating.

Fig. 5
Fig. 5

Modeling: (a) the refractive index pattern along a grating section (note this design is deliberately shortened to illustrate the apodization approach); (b) refractive index change (Δnac) as a function of wavelength detuning (Δλ) with the phase-controlled method; (c) partial enlarged details in (a) present grating period variation showing wavelength detuning; (d) 1 mm uniform grating reflection peaks variation as a function of Δλ with 250nm FWHM.

Fig. 6
Fig. 6

Experimental demonstration: (a) reflectivity spectrum of the gratings from 1250nm to 1650nm. (b) Grating peak reflectivity (red dot) and modeled curve (solid line).

Metrics