Abstract

Abstract: A 3D SEM Moiré Method (SMM) is proposed in this investigation for the first time for 3D shape measurement with nano-scale sensitivity. The geometric model of the 3D SMM has been theoretically established, combining the stereovision technology in an SEM with the existing principles of in-plane SMM. The Virtual Projection Fringe (VPF) generated under different conditions has been analyzed for 3D reconstructions. Two typical applications have been used to experimentally validate the theoretical model. Experimental results, with the height measurement sensitivity less than 10nm, agree well with the theoretical model we proposed. The uncertainty analysis for the method has also been performed by other auxiliary measurements.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994), Chap.4.
  2. O. Bryngdahl, “Moiré: Formation and interpretation,” J. Opt. Soc. Am.64(10), 1287–1294 (1974).
    [CrossRef]
  3. I. Amidror, The Theory of the Moiré Phenomenon (Springer-Verlag, 2009).
  4. J. W. Dally and D. T. Read, “Electron beam moiré,” Exp. Mech.33(4), 270–277 (1993).
    [CrossRef]
  5. B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum.77(4), 043101 (2006).
    [CrossRef]
  6. H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech.24(1), 31–32 (2000).
  7. S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng.32(3), 522–526 (1993).
    [CrossRef]
  8. C. M. Liu, L. W. Chen, and C. C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology17(17), 4359–4366 (2006).
    [CrossRef]
  9. F. Silly, “Moiré pattern induced by the electronic coupling between 1-octanol self-assembled monolayers and graphite surface,” Nanotechnology23(22), 225603 (2012).
    [CrossRef] [PubMed]
  10. S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci.40(452), 637–641 (1991).
    [CrossRef]
  11. Z. W. Zhong, “Thermal strain analysis of IC packages using various Moiré methods,” Microelectron. Int.21(3), 25–28 (2004).
    [CrossRef]
  12. H. Chen and D. Liu, “Advances in scanning electron microscope Moiré,” Exp. Mech.41(2), 165–173 (2001).
    [CrossRef]
  13. Y. M. Xing, Y. Tanaka, S. Kishimoto, and N. Shinya, “Determining interfacial thermal residual stress in SiC/Ti-15-3 composites,” Scr. Mater.48(6), 701–706 (2003).
    [CrossRef]
  14. H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
    [CrossRef]
  15. Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010).
    [CrossRef]
  16. Z. W. Liu, X. F. Huang, H. M. Xie, X. H. Lou, and H. Du, “The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale,” Meas. Sci. Technol.22(12), 125702 (2011).
    [CrossRef]
  17. Z. X. Hu, H. Xie, J. Lu, Z. Liu, and Q. Wang, “A new method for the reconstruction of micro- and nanoscale planar periodic structures,” Ultramicroscopy110(9), 1223–1230 (2010).
    [CrossRef] [PubMed]
  18. H. M. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys.101(10), 103511 (2007).
    [CrossRef]
  19. Y. Arai, M. Ando, S. Kanameishi, and S. Yokozeki, “Micro 3D measurement method using SEM,” Mapan26(1), 69–78 (2011).
    [CrossRef]
  20. G. Piazzesi, “Photogrammetry with the scanning electron microscope,” J. Phys. E Sci. Instrum.6(4), 392–396 (1973).
    [CrossRef]
  21. G. S. Lane, “The application of stereographic techniques to the scanning electron microscope,” J. Phys. E Sci. Instrum.2(7), 565–569 (1969).
    [CrossRef]
  22. C. W. Li, Z. W. Liu, and H. Xie, “A measurement method for micro 3D shape based on grids-processing and stereovision technology,” Meas. Sci. Technol.24(4), 045401 (2013).
    [CrossRef]
  23. F. Marinello, P. Bariani, E. Savio, A. Horsewell, and L. De Chiffre, “Critical factors in SEM 3D stereo microscopy,” Meas. Sci. Technol.19(6), 065705 (2008).
    [CrossRef]
  24. M. J. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of Moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express20(3), 2942–2955 (2012).
    [CrossRef] [PubMed]
  25. G. A. Mastin and D. C. Ghiglia, “Digital extraction of interference fringe contours,” Appl. Opt.24(12), 1727–1728 (1985).
    [CrossRef] [PubMed]
  26. T. Y. Chen and C. E. Taylor, “Computerized fringe analysis in photomechanics,” Exp. Mech.29(3), 323–329 (1989).
    [CrossRef]
  27. Y. Morimoto, “Digital image processing,” In: Kobayashi A. eds., Handbook on Experimental Mechanics. 2nd edition. SEM, (1994).
  28. W. W. Macy and W. William, “Two-dimensional fringe-pattern analysis,” Appl. Opt.22(23), 3898–3901 (1983).
    [CrossRef] [PubMed]
  29. G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” JOSA A.8(5), 822–827 (1991).
    [CrossRef]
  30. M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
    [CrossRef]
  31. T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
    [CrossRef]

2013 (1)

C. W. Li, Z. W. Liu, and H. Xie, “A measurement method for micro 3D shape based on grids-processing and stereovision technology,” Meas. Sci. Technol.24(4), 045401 (2013).
[CrossRef]

2012 (2)

F. Silly, “Moiré pattern induced by the electronic coupling between 1-octanol self-assembled monolayers and graphite surface,” Nanotechnology23(22), 225603 (2012).
[CrossRef] [PubMed]

M. J. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of Moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express20(3), 2942–2955 (2012).
[CrossRef] [PubMed]

2011 (3)

T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
[CrossRef]

Y. Arai, M. Ando, S. Kanameishi, and S. Yokozeki, “Micro 3D measurement method using SEM,” Mapan26(1), 69–78 (2011).
[CrossRef]

Z. W. Liu, X. F. Huang, H. M. Xie, X. H. Lou, and H. Du, “The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale,” Meas. Sci. Technol.22(12), 125702 (2011).
[CrossRef]

2010 (2)

Z. X. Hu, H. Xie, J. Lu, Z. Liu, and Q. Wang, “A new method for the reconstruction of micro- and nanoscale planar periodic structures,” Ultramicroscopy110(9), 1223–1230 (2010).
[CrossRef] [PubMed]

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010).
[CrossRef]

2008 (1)

F. Marinello, P. Bariani, E. Savio, A. Horsewell, and L. De Chiffre, “Critical factors in SEM 3D stereo microscopy,” Meas. Sci. Technol.19(6), 065705 (2008).
[CrossRef]

2007 (2)

H. M. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys.101(10), 103511 (2007).
[CrossRef]

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

2006 (3)

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum.77(4), 043101 (2006).
[CrossRef]

C. M. Liu, L. W. Chen, and C. C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology17(17), 4359–4366 (2006).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

2004 (1)

Z. W. Zhong, “Thermal strain analysis of IC packages using various Moiré methods,” Microelectron. Int.21(3), 25–28 (2004).
[CrossRef]

2003 (1)

Y. M. Xing, Y. Tanaka, S. Kishimoto, and N. Shinya, “Determining interfacial thermal residual stress in SiC/Ti-15-3 composites,” Scr. Mater.48(6), 701–706 (2003).
[CrossRef]

2001 (1)

H. Chen and D. Liu, “Advances in scanning electron microscope Moiré,” Exp. Mech.41(2), 165–173 (2001).
[CrossRef]

2000 (1)

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech.24(1), 31–32 (2000).

1993 (2)

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng.32(3), 522–526 (1993).
[CrossRef]

J. W. Dally and D. T. Read, “Electron beam moiré,” Exp. Mech.33(4), 270–277 (1993).
[CrossRef]

1991 (2)

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci.40(452), 637–641 (1991).
[CrossRef]

G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” JOSA A.8(5), 822–827 (1991).
[CrossRef]

1989 (1)

T. Y. Chen and C. E. Taylor, “Computerized fringe analysis in photomechanics,” Exp. Mech.29(3), 323–329 (1989).
[CrossRef]

1985 (1)

1983 (1)

1974 (1)

1973 (1)

G. Piazzesi, “Photogrammetry with the scanning electron microscope,” J. Phys. E Sci. Instrum.6(4), 392–396 (1973).
[CrossRef]

1969 (1)

G. S. Lane, “The application of stereographic techniques to the scanning electron microscope,” J. Phys. E Sci. Instrum.2(7), 565–569 (1969).
[CrossRef]

Ando, M.

Y. Arai, M. Ando, S. Kanameishi, and S. Yokozeki, “Micro 3D measurement method using SEM,” Mapan26(1), 69–78 (2011).
[CrossRef]

Arai, Y.

Y. Arai, M. Ando, S. Kanameishi, and S. Yokozeki, “Micro 3D measurement method using SEM,” Mapan26(1), 69–78 (2011).
[CrossRef]

Bariani, P.

F. Marinello, P. Bariani, E. Savio, A. Horsewell, and L. De Chiffre, “Critical factors in SEM 3D stereo microscopy,” Meas. Sci. Technol.19(6), 065705 (2008).
[CrossRef]

Bryngdahl, O.

Chen, H.

H. Chen and D. Liu, “Advances in scanning electron microscope Moiré,” Exp. Mech.41(2), 165–173 (2001).
[CrossRef]

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech.24(1), 31–32 (2000).

Chen, L. W.

C. M. Liu, L. W. Chen, and C. C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology17(17), 4359–4366 (2006).
[CrossRef]

Chen, T. Y.

T. Y. Chen and C. E. Taylor, “Computerized fringe analysis in photomechanics,” Exp. Mech.29(3), 323–329 (1989).
[CrossRef]

Cornille, N.

T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

Dai, F.

H. M. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys.101(10), 103511 (2007).
[CrossRef]

Dally, J. W.

J. W. Dally and D. T. Read, “Electron beam moiré,” Exp. Mech.33(4), 270–277 (1993).
[CrossRef]

De Chiffre, L.

F. Marinello, P. Bariani, E. Savio, A. Horsewell, and L. De Chiffre, “Critical factors in SEM 3D stereo microscopy,” Meas. Sci. Technol.19(6), 065705 (2008).
[CrossRef]

Du, H.

Z. W. Liu, X. F. Huang, H. M. Xie, X. H. Lou, and H. Du, “The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale,” Meas. Sci. Technol.22(12), 125702 (2011).
[CrossRef]

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

Egashira, M.

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng.32(3), 522–526 (1993).
[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci.40(452), 637–641 (1991).
[CrossRef]

Garcia, D.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

Ghiglia, D. C.

Gu, C.

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

Gu, C. Z.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010).
[CrossRef]

Guo, B. Q.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010).
[CrossRef]

Guo, Z.

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

Horsewell, A.

F. Marinello, P. Bariani, E. Savio, A. Horsewell, and L. De Chiffre, “Critical factors in SEM 3D stereo microscopy,” Meas. Sci. Technol.19(6), 065705 (2008).
[CrossRef]

Hu, Z. X.

Z. X. Hu, H. Xie, J. Lu, Z. Liu, and Q. Wang, “A new method for the reconstruction of micro- and nanoscale planar periodic structures,” Ultramicroscopy110(9), 1223–1230 (2010).
[CrossRef] [PubMed]

Huang, X. F.

Z. W. Liu, X. F. Huang, H. M. Xie, X. H. Lou, and H. Du, “The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale,” Meas. Sci. Technol.22(12), 125702 (2011).
[CrossRef]

Jiang, H.

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

Kanameishi, S.

Y. Arai, M. Ando, S. Kanameishi, and S. Yokozeki, “Micro 3D measurement method using SEM,” Mapan26(1), 69–78 (2011).
[CrossRef]

Kishimoto, S.

H. M. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys.101(10), 103511 (2007).
[CrossRef]

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum.77(4), 043101 (2006).
[CrossRef]

Y. M. Xing, Y. Tanaka, S. Kishimoto, and N. Shinya, “Determining interfacial thermal residual stress in SiC/Ti-15-3 composites,” Scr. Mater.48(6), 701–706 (2003).
[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng.32(3), 522–526 (1993).
[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci.40(452), 637–641 (1991).
[CrossRef]

Lai, G.

G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” JOSA A.8(5), 822–827 (1991).
[CrossRef]

Lane, G. S.

G. S. Lane, “The application of stereographic techniques to the scanning electron microscope,” J. Phys. E Sci. Instrum.2(7), 565–569 (1969).
[CrossRef]

Lee, A.

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech.24(1), 31–32 (2000).

Li, C. W.

C. W. Li, Z. W. Liu, and H. Xie, “A measurement method for micro 3D shape based on grids-processing and stereovision technology,” Meas. Sci. Technol.24(4), 045401 (2013).
[CrossRef]

Li, N.

T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

Li, X.

M. J. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of Moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express20(3), 2942–2955 (2012).
[CrossRef] [PubMed]

T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
[CrossRef]

Li, X. D.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

Li, Y.

Li, Y. J.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010).
[CrossRef]

Liu, C. M.

C. M. Liu, L. W. Chen, and C. C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology17(17), 4359–4366 (2006).
[CrossRef]

Liu, D.

H. Chen and D. Liu, “Advances in scanning electron microscope Moiré,” Exp. Mech.41(2), 165–173 (2001).
[CrossRef]

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech.24(1), 31–32 (2000).

Liu, Z.

Z. X. Hu, H. Xie, J. Lu, Z. Liu, and Q. Wang, “A new method for the reconstruction of micro- and nanoscale planar periodic structures,” Ultramicroscopy110(9), 1223–1230 (2010).
[CrossRef] [PubMed]

Liu, Z. W.

C. W. Li, Z. W. Liu, and H. Xie, “A measurement method for micro 3D shape based on grids-processing and stereovision technology,” Meas. Sci. Technol.24(4), 045401 (2013).
[CrossRef]

Z. W. Liu, X. F. Huang, H. M. Xie, X. H. Lou, and H. Du, “The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale,” Meas. Sci. Technol.22(12), 125702 (2011).
[CrossRef]

Lou, X. H.

Z. W. Liu, X. F. Huang, H. M. Xie, X. H. Lou, and H. Du, “The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale,” Meas. Sci. Technol.22(12), 125702 (2011).
[CrossRef]

Lu, J.

Z. X. Hu, H. Xie, J. Lu, Z. Liu, and Q. Wang, “A new method for the reconstruction of micro- and nanoscale planar periodic structures,” Ultramicroscopy110(9), 1223–1230 (2010).
[CrossRef] [PubMed]

Luo, Q.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010).
[CrossRef]

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

Macy, W. W.

Marinello, F.

F. Marinello, P. Bariani, E. Savio, A. Horsewell, and L. De Chiffre, “Critical factors in SEM 3D stereo microscopy,” Meas. Sci. Technol.19(6), 065705 (2008).
[CrossRef]

Mastin, G. A.

Mcneill, S. R.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

Orteu, J. J.

T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

Pan, B.

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum.77(4), 043101 (2006).
[CrossRef]

Piazzesi, G.

G. Piazzesi, “Photogrammetry with the scanning electron microscope,” J. Phys. E Sci. Instrum.6(4), 392–396 (1973).
[CrossRef]

Read, D. T.

J. W. Dally and D. T. Read, “Electron beam moiré,” Exp. Mech.33(4), 270–277 (1993).
[CrossRef]

Reynolds, A. P.

T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
[CrossRef]

Rong, L.

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

Savio, E.

F. Marinello, P. Bariani, E. Savio, A. Horsewell, and L. De Chiffre, “Critical factors in SEM 3D stereo microscopy,” Meas. Sci. Technol.19(6), 065705 (2008).
[CrossRef]

Schreier, H. W.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

Shinya, N.

Y. M. Xing, Y. Tanaka, S. Kishimoto, and N. Shinya, “Determining interfacial thermal residual stress in SiC/Ti-15-3 composites,” Scr. Mater.48(6), 701–706 (2003).
[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng.32(3), 522–526 (1993).
[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci.40(452), 637–641 (1991).
[CrossRef]

Silly, F.

F. Silly, “Moiré pattern induced by the electronic coupling between 1-octanol self-assembled monolayers and graphite surface,” Nanotechnology23(22), 225603 (2012).
[CrossRef] [PubMed]

Sutton, M. A.

T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

Tanaka, Y.

Y. M. Xing, Y. Tanaka, S. Kishimoto, and N. Shinya, “Determining interfacial thermal residual stress in SiC/Ti-15-3 composites,” Scr. Mater.48(6), 701–706 (2003).
[CrossRef]

Tang, M. J.

Taylor, C. E.

T. Y. Chen and C. E. Taylor, “Computerized fringe analysis in photomechanics,” Exp. Mech.29(3), 323–329 (1989).
[CrossRef]

Wang, C. C.

C. M. Liu, L. W. Chen, and C. C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology17(17), 4359–4366 (2006).
[CrossRef]

Wang, Q.

Z. X. Hu, H. Xie, J. Lu, Z. Liu, and Q. Wang, “A new method for the reconstruction of micro- and nanoscale planar periodic structures,” Ultramicroscopy110(9), 1223–1230 (2010).
[CrossRef] [PubMed]

H. M. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys.101(10), 103511 (2007).
[CrossRef]

William, W.

Xie, H.

C. W. Li, Z. W. Liu, and H. Xie, “A measurement method for micro 3D shape based on grids-processing and stereovision technology,” Meas. Sci. Technol.24(4), 045401 (2013).
[CrossRef]

M. J. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of Moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express20(3), 2942–2955 (2012).
[CrossRef] [PubMed]

Z. X. Hu, H. Xie, J. Lu, Z. Liu, and Q. Wang, “A new method for the reconstruction of micro- and nanoscale planar periodic structures,” Ultramicroscopy110(9), 1223–1230 (2010).
[CrossRef] [PubMed]

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

Xie, H. M.

Z. W. Liu, X. F. Huang, H. M. Xie, X. H. Lou, and H. Du, “The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale,” Meas. Sci. Technol.22(12), 125702 (2011).
[CrossRef]

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010).
[CrossRef]

H. M. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys.101(10), 103511 (2007).
[CrossRef]

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum.77(4), 043101 (2006).
[CrossRef]

Xing, Y.

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum.77(4), 043101 (2006).
[CrossRef]

Xing, Y. M.

Y. M. Xing, Y. Tanaka, S. Kishimoto, and N. Shinya, “Determining interfacial thermal residual stress in SiC/Ti-15-3 composites,” Scr. Mater.48(6), 701–706 (2003).
[CrossRef]

Xu, M. Q.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010).
[CrossRef]

Yatagai, T.

G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” JOSA A.8(5), 822–827 (1991).
[CrossRef]

Yokozeki, S.

Y. Arai, M. Ando, S. Kanameishi, and S. Yokozeki, “Micro 3D measurement method using SEM,” Mapan26(1), 69–78 (2011).
[CrossRef]

Zhong, Z. W.

Z. W. Zhong, “Thermal strain analysis of IC packages using various Moiré methods,” Microelectron. Int.21(3), 25–28 (2004).
[CrossRef]

Zhu, J.

Zhu, T.

T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
[CrossRef]

Appl. Opt. (2)

Exp. Mech. (5)

T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011).
[CrossRef]

T. Y. Chen and C. E. Taylor, “Computerized fringe analysis in photomechanics,” Exp. Mech.29(3), 323–329 (1989).
[CrossRef]

J. W. Dally and D. T. Read, “Electron beam moiré,” Exp. Mech.33(4), 270–277 (1993).
[CrossRef]

H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech.24(1), 31–32 (2000).

H. Chen and D. Liu, “Advances in scanning electron microscope Moiré,” Exp. Mech.41(2), 165–173 (2001).
[CrossRef]

J. Appl. Phys. (1)

H. M. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys.101(10), 103511 (2007).
[CrossRef]

J. Micromech. Microeng. (1)

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. E Sci. Instrum. (2)

G. Piazzesi, “Photogrammetry with the scanning electron microscope,” J. Phys. E Sci. Instrum.6(4), 392–396 (1973).
[CrossRef]

G. S. Lane, “The application of stereographic techniques to the scanning electron microscope,” J. Phys. E Sci. Instrum.2(7), 565–569 (1969).
[CrossRef]

J. Soc. Mat. Sci. (1)

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci.40(452), 637–641 (1991).
[CrossRef]

JOSA A. (1)

G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” JOSA A.8(5), 822–827 (1991).
[CrossRef]

Mapan (1)

Y. Arai, M. Ando, S. Kanameishi, and S. Yokozeki, “Micro 3D measurement method using SEM,” Mapan26(1), 69–78 (2011).
[CrossRef]

Meas. Sci. Technol. (4)

Z. W. Liu, X. F. Huang, H. M. Xie, X. H. Lou, and H. Du, “The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale,” Meas. Sci. Technol.22(12), 125702 (2011).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006).
[CrossRef]

C. W. Li, Z. W. Liu, and H. Xie, “A measurement method for micro 3D shape based on grids-processing and stereovision technology,” Meas. Sci. Technol.24(4), 045401 (2013).
[CrossRef]

F. Marinello, P. Bariani, E. Savio, A. Horsewell, and L. De Chiffre, “Critical factors in SEM 3D stereo microscopy,” Meas. Sci. Technol.19(6), 065705 (2008).
[CrossRef]

Microelectron. Int. (1)

Z. W. Zhong, “Thermal strain analysis of IC packages using various Moiré methods,” Microelectron. Int.21(3), 25–28 (2004).
[CrossRef]

Nanotechnology (2)

C. M. Liu, L. W. Chen, and C. C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology17(17), 4359–4366 (2006).
[CrossRef]

F. Silly, “Moiré pattern induced by the electronic coupling between 1-octanol self-assembled monolayers and graphite surface,” Nanotechnology23(22), 225603 (2012).
[CrossRef] [PubMed]

Opt. Eng. (1)

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng.32(3), 522–526 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum.77(4), 043101 (2006).
[CrossRef]

Scr. Mater. (1)

Y. M. Xing, Y. Tanaka, S. Kishimoto, and N. Shinya, “Determining interfacial thermal residual stress in SiC/Ti-15-3 composites,” Scr. Mater.48(6), 701–706 (2003).
[CrossRef]

Ultramicroscopy (1)

Z. X. Hu, H. Xie, J. Lu, Z. Liu, and Q. Wang, “A new method for the reconstruction of micro- and nanoscale planar periodic structures,” Ultramicroscopy110(9), 1223–1230 (2010).
[CrossRef] [PubMed]

Other (3)

I. Amidror, The Theory of the Moiré Phenomenon (Springer-Verlag, 2009).

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994), Chap.4.

Y. Morimoto, “Digital image processing,” In: Kobayashi A. eds., Handbook on Experimental Mechanics. 2nd edition. SEM, (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Mechanism of fringe generation: when specimen grating (on the sample surface) varies ((a) rotation; (b) compressing or stretching), there appears fringes containing the information of displacement and strain of the sample.

Fig. 2
Fig. 2

(a) Imaging principle of an SEM; (b) Geometric location change from y 1 to y 2 after the tilt of the sample plane.

Fig. 3
Fig. 3

Generation of the VPF by out-of-plane translation: (a) equivalent optical system; (b) imaging variation in the monitor.

Fig. 4
Fig. 4

Schematic of the VPF: (a) simulation of the VPF; (b) geometric description of the VPF generation by tilting the sample stage.

Fig. 5
Fig. 5

Calibration curve for the spatial frequency of the reference grating in the SEM.

Fig. 6
Fig. 6

VPF formed by tilting the sample stage with (a) 1200lines/mm sample and (b) 3000lines/mm sample.

Fig. 7
Fig. 7

Optical and SEM image ((a) and (b) respectively) of the PDMS sheet at tilt angle of (c) 0°and (d) 6°, showing the parallax shift change of the Moiré fringes with respect to the tilt.

Fig. 8
Fig. 8

Calculation: (a) different displacement field obtained at different tilt angles; (b) profile of the tested area.

Fig. 9
Fig. 9

Blister shape deformation of the grating: (a) image under an optical microscopy; (b) 3D shape obtained by a 3D digital microscopy (Keyence VHX-500F); (c)scanning Moiré image of the sample at tilt angle of 0° and (d) at ± 10°; (e)calculation of the displacement field at different tilting angles.

Fig. 10
Fig. 10

Profile of sample 1 measured by different methods.

Fig. 11
Fig. 11

Profile of sample 2 measured by different methods.

Tables (2)

Tables Icon

Table 1 The height values of sample 1 obtained by different equipment.

Tables Icon

Table 2 The height values of sample 2 obtained by different equipment.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

h= y 1 y 2 2Msinφ + y 1 y 2 M 2 Rcosφ 1+ y 1 y 2 (MR) 2 + y 1 y 2 2MR cotφtanφ
h= 1 M y 1 y 2 2sinφ
u= N x p r
v= N y p r
ΔL=L(1cosφ)
N x x p r =sinφtan φ 2
h = N 2 p r 2 R (MMcosφ) 2 - N p r 2Msinφ 1+ N 2 p r 2 cosφ [MR(1-cosφ)] 2 - N p r 2MR cotφtanφ
h= 1 M N p r 2sinφ
f r = 1 p r =3.42M
Δ φ min =arccos( ΔL1 ΔL ) Δ φ min | ΔL=1024pixels 2.53

Metrics