Abstract

RF2:Bi (R = Ca and Sr) phosphors were synthesized by solid state reaction method in air and their luminescence properties were investigated. Broad yellow-to-orange emissions peaking at ~550 nm (CaF2:Bi) and ~600 nm (SrF2:Bi) were observed under ~260 nm excitation. The emission centers inRF2:Bi (R = Ca and Sr) phosphors are Bi2+ ions, and the excitation and emission bands ofRF2:Bi (R = Ca and Sr) phosphors can be attributed to 2P1/22S1/2 and 2P3/2(1) →2P1/2 transitions of Bi2+ ions, respectively. The phosphors are promising for application in lighting due to broad yellow-to- orange emission.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Blasse and B. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin Heidelberg 1994).
  2. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  3. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express13(5), 1635–1642 (2005).
    [CrossRef] [PubMed]
  4. G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
    [CrossRef]
  5. M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
    [CrossRef]
  6. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
    [CrossRef]
  7. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
    [CrossRef]
  8. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
    [CrossRef]
  9. A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
    [CrossRef]
  10. H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
    [CrossRef] [PubMed]
  11. M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93(5), 1437–1442 (2010).
  12. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
    [CrossRef]
  13. Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, and M. Nikl, “Luminescence spectroscopy of the Bi3+ single and dimmer centers in Y3Al5O12:Bi single crystalline films,” J. Lumin.130(10), 1963–1969 (2010).
    [CrossRef]
  14. R. Cao, M. Peng, and J. Qiu, “Luminescence from Bi2+-doped BaSO4 for White LEDs,” Opt. Express20(S6), A977–A983 (2012).
    [CrossRef]
  15. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  16. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]
  17. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3.,” Opt. Express20(3), 2562–2571 (2012).
    [CrossRef] [PubMed]
  18. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express20(7), 7212–7220 (2012).
    [CrossRef] [PubMed]
  19. R. Cao, M. Peng, J. Zheng, J. Qiu, and Q. Zhang, “Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3.,” Opt. Express20(16), 18505–18514 (2012).
    [CrossRef] [PubMed]
  20. J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express17(7), 5163–5169 (2009).
    [CrossRef] [PubMed]
  21. H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
    [CrossRef]
  22. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
    [CrossRef] [PubMed]
  23. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
    [CrossRef] [PubMed]
  24. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
    [CrossRef] [PubMed]
  25. Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
    [CrossRef] [PubMed]

2012 (5)

2011 (2)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

2010 (4)

M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93(5), 1437–1442 (2010).

Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, and M. Nikl, “Luminescence spectroscopy of the Bi3+ single and dimmer centers in Y3Al5O12:Bi single crystalline films,” J. Lumin.130(10), 1963–1969 (2010).
[CrossRef]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (2)

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

2005 (2)

1999 (1)

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

1998 (1)

A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
[CrossRef]

1994 (1)

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

1968 (1)

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Akada, T.

Asahara, T.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Bai, Z.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Blasse, G.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Bril, A.

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Cao, R.

Chen, D.

Chen, D. P.

Da, N.

Deki, S.

H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
[CrossRef]

Dianov, E.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Dvoyrin, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Fattakhova, Z. T.

Folkerts, H.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Fujii, M.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
[CrossRef]

Fujimoto, Y.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Fujita, H.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Gao, H.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Gorbenko, V.

Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, and M. Nikl, “Luminescence spectroscopy of the Bi3+ single and dimmer centers in Y3Al5O12:Bi single crystalline films,” J. Lumin.130(10), 1963–1969 (2010).
[CrossRef]

Hamstra, M.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Hao, J.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Haula, E. V.

Hayashi, S.

H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
[CrossRef]

Hewak, D. W.

Hosokawa, A.

H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
[CrossRef]

Hughes, M. A.

Ii, M.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Jary, V.

Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, and M. Nikl, “Luminescence spectroscopy of the Bi3+ single and dimmer centers in Y3Al5O12:Bi single crystalline films,” J. Lumin.130(10), 1963–1969 (2010).
[CrossRef]

Jiang, N.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Jiang, X. W.

Kanabe, T.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Kazin, P. E.

Korchak, V. N.

Krolikowski, S.

Lakshminarayana, G.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Li, J. G.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Liao, L.

Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

Mashinsky, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Meng, X.

Meng, X. G.

Miwa, Y.

H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
[CrossRef]

Mizuhata, M.

H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
[CrossRef]

Murata, K.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Nakatsuka, M.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Nikl, M.

Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, and M. Nikl, “Luminescence spectroscopy of the Bi3+ single and dimmer centers in Y3Al5O12:Bi single crystalline films,” J. Lumin.130(10), 1963–1969 (2010).
[CrossRef]

Ohishi, Y.

Peng, M.

R. Cao, M. Peng, J. Zheng, J. Qiu, and Q. Zhang, “Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3.,” Opt. Express20(16), 18505–18514 (2012).
[CrossRef] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3.,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

R. Cao, M. Peng, and J. Qiu, “Luminescence from Bi2+-doped BaSO4 for White LEDs,” Opt. Express20(S6), A977–A983 (2012).
[CrossRef]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93(5), 1437–1442 (2010).

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Peng, M. Y.

Qiu, J.

Qiu, J. R.

Romanov, A. N.

Ruan, J.

Sakka, Y.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Schmidt, M. A.

Schwefel, H. G.

Shimaoka, F.

H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
[CrossRef]

Shirahata, N.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Sprenger, B.

Srivastava, A.

A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
[CrossRef]

Stiegelschmitt, A.

Su, L.

Sulimov, V. B.

Sun, H.

H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
[CrossRef]

Sun, H. T.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Suzuki, T.

Trusov, L. A.

Tsvetkov, V. B.

Usovich, O. V.

Veber, A. A.

Voznyak, T.

Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, and M. Nikl, “Luminescence spectroscopy of the Bi3+ single and dimmer centers in Y3Al5O12:Bi single crystalline films,” J. Lumin.130(10), 1963–1969 (2010).
[CrossRef]

Wondraczek, L.

Xia, Z.

Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

Xu, J.

Yang, H.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Yang, J.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Ye, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, Q.

Zhao, Q. Z.

Zheng, J.

Zhou, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhu, B.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhu, C.

Zhu, C. S.

Zhu, Y.

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Zhuang, J.

Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

Zorenko, Y.

Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, and M. Nikl, “Luminescence spectroscopy of the Bi3+ single and dimmer centers in Y3Al5O12:Bi single crystalline films,” J. Lumin.130(10), 1963–1969 (2010).
[CrossRef]

Adv. Funct. Mater. (1)

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Adv. Mater. (1)

H. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong Ultra-broadband Near-Infrared Photoluminescence from Bismuth-Embedded Zeolites and Their Derivatives,” Adv. Mater.21(36), 3694–3698 (2009).
[CrossRef]

Fusion Eng. Des. (1)

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Inorg. Chem. (1)

Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

J. Am. Ceram. Soc. (1)

M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93(5), 1437–1442 (2010).

J. Chem. Phys. (1)

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

J. Lumin. (2)

A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
[CrossRef]

Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, and M. Nikl, “Luminescence spectroscopy of the Bi3+ single and dimmer centers in Y3Al5O12:Bi single crystalline films,” J. Lumin.130(10), 1963–1969 (2010).
[CrossRef]

J. Mater. Chem. (1)

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

J. Non-Cryst. Solids (1)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Opt. Express (9)

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express13(5), 1635–1642 (2005).
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3.,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express20(7), 7212–7220 (2012).
[CrossRef] [PubMed]

R. Cao, M. Peng, J. Zheng, J. Qiu, and Q. Zhang, “Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3.,” Opt. Express20(16), 18505–18514 (2012).
[CrossRef] [PubMed]

R. Cao, M. Peng, and J. Qiu, “Luminescence from Bi2+-doped BaSO4 for White LEDs,” Opt. Express20(S6), A977–A983 (2012).
[CrossRef]

Opt. Lett. (3)

Small (1)

H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011).
[CrossRef] [PubMed]

Other (1)

G. Blasse and B. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin Heidelberg 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD patterns of R (1-x)BixF2 (R = Ca and Sr) (x = 0 and 5 mol%) sintered at 1000°C in air for 2h,JCPDS card no. 75-363 (CaF2) and 86-2418 (SrF2).

Fig. 2
Fig. 2

PLE and PL of R0.95Bi0.05F2 (R = Ca and Sr) phosphors sintered at 1000°C in air and reducing atmosphere (5%H2 and 95%N2 gas mixture). Inset: Pictures of R0.95Bi0.05F2 (R = Ca and Sr) phosphors sintered in air and reducing atmosphere.

Fig. 3
Fig. 3

Fluorescence decay curves of R0.95Bi0.05F2 (R = Ca and Sr) phosphors sintered at 1000°C in air for 2h. (The monitoring wavelengths are 550 nm (Ca0.95Bi0.05F2) and 600 nm (Sr0.95Bi0.05F2) with 260 nm excitation) The red curve is a fit of the experimental data to a first order exponential decay equation.

Fig. 4
Fig. 4

(A) Time resolved luminescence spectra of R0.95Bi0.05F2 (R = Ca and Sr) phosphors sintered at 1000°C in air for 2h. Excitation wavelength is ~260nm. Delay times are given in the figure. (B) PL of R0.95Bi0.05F2 (R = Ca and Sr) phosphors intered at 1000°C in air for 2h in the range of 10 to 300K.Inset:Influences of the temperature on the emission intensity and fluorescence lifetime of R0.95Bi0.05F2 (R = Ca and Sr) phosphors in the range of 10 to 300K.

Fig. 5
Fig. 5

Schematic configurational coordinate diagram with emission and excitation transitions in Bi2+ ion. The energy E is plotted vs the coordinate r. Parabola “GS” refers to the ground state 2P1/2 of Bi2+, and “ES1”, “ES2”, and “ES3” refer to the excited states 2P3/2(1), 2P3/2(2) and 2S1/2 of Bi2+, respectively. Relaxation paths 1-3 are labeled red, green and plum curves, respectively.

Tables (1)

Tables Icon

Table 1 Excitation (λex) and emission (λem) of Bi2+ doped phosphors. “-” means unobserved or unreported.

Metrics