Abstract

An innovative liquid crystal display (LCD), incorporating in-plane switching mechanism with LC nanoencapsulation, is developed and its electro-optic (EO) performances are characterized. The nanoencapsulated LCDs exhibit electric-field induced transitions from an optically-isotropic state to an anisotropic one based on Kerr effect. Extremely small size of LC droplets embedded in the nanoencapsulated layer, less than a quarter of wavelength of incident light, appear transparent in the voltage-off state and gradually becomes birefringent in response to applied voltage, exhibiting the optical behavior of uniaxial retarder. Due to optically-isotropic nature and a large Kerr effect, they show wide viewing angle characteristics and good EO performances.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Fergason, “Polymer encapsulated nematic liquid crystals for displays and light control approaches,” SID Symp. Dig. 16, 68 (1985).
  2. Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys.44(5A), 3115–3120 (2005).
    [CrossRef]
  3. S. J. Jang, J. W. Jung, H. R. Kim, M. Y. Jin, and J. H. Kim, “Stability-enhanced pixel-isolated method for flexible liquid crystal displays,” Jpn. J. Appl. Phys.44(9A), 6670–6673 (2005).
    [CrossRef]
  4. M. J. Sansone, G. Khanarian, and M. S. Kwiatek, “Large Kerr effects in transparent encapsulated liquid crystals. II. Frequency response,” J. Appl. Phys.75(3), 1715 (1994).
    [CrossRef]
  5. E. A. B. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 1991) p. 696.
  6. J. H. Kim, S. D. Lee, and S. Kumar, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics57(5), 5644–5650 (1998).
    [CrossRef]
  7. T. Kissel, S. Maretschek, C. Packhauser, J. Schneiders, and N. Seidel, in Microencapsulation, ed. S. Benita (CRC Press, New York, 2006), p. 103.
  8. K. S. Bae, Y. J. Lee, C. J. Yu, H. J. Lee, J. H. Park, and J. H. Kim, “Low voltage and High Transmittance Polymer-Stabilized Blue-Phase Liquid Crystal Device by Combined In-Plane and Oblique Electric Field along the Horizontal Direction,” Jpn. J. Appl. Phys.51, 072201 (2012).
    [CrossRef]
  9. S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
    [CrossRef]
  10. Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Disp. Tech.5(7), 250–256 (2009).
    [CrossRef]
  11. Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett.92(18), 181109 (2008).
    [CrossRef]
  12. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide-temperature range,” Adv. Mater.17(19), 2311–2315 (2005).
    [CrossRef]
  13. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
    [CrossRef]
  14. H. S. Choi, G. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett.98(13), 131905 (2011).
    [CrossRef]
  15. J. H. Jung, K. S. Ha, M. N. Chae, W. S. Kang, G. D. Lee, and S. H. Lee, “Abnormal behavior in colour tracking characteristics of the fringe-field switching liquid crystal display,” Liq. Cryst.37(3), 303–309 (2010).
    [CrossRef]
  16. J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870 (2011).
    [CrossRef]

2012 (1)

K. S. Bae, Y. J. Lee, C. J. Yu, H. J. Lee, J. H. Park, and J. H. Kim, “Low voltage and High Transmittance Polymer-Stabilized Blue-Phase Liquid Crystal Device by Combined In-Plane and Oblique Electric Field along the Horizontal Direction,” Jpn. J. Appl. Phys.51, 072201 (2012).
[CrossRef]

2011 (2)

H. S. Choi, G. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett.98(13), 131905 (2011).
[CrossRef]

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870 (2011).
[CrossRef]

2010 (3)

J. H. Jung, K. S. Ha, M. N. Chae, W. S. Kang, G. D. Lee, and S. H. Lee, “Abnormal behavior in colour tracking characteristics of the fringe-field switching liquid crystal display,” Liq. Cryst.37(3), 303–309 (2010).
[CrossRef]

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
[CrossRef]

2009 (1)

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Disp. Tech.5(7), 250–256 (2009).
[CrossRef]

2008 (1)

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett.92(18), 181109 (2008).
[CrossRef]

2005 (3)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide-temperature range,” Adv. Mater.17(19), 2311–2315 (2005).
[CrossRef]

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys.44(5A), 3115–3120 (2005).
[CrossRef]

S. J. Jang, J. W. Jung, H. R. Kim, M. Y. Jin, and J. H. Kim, “Stability-enhanced pixel-isolated method for flexible liquid crystal displays,” Jpn. J. Appl. Phys.44(9A), 6670–6673 (2005).
[CrossRef]

1998 (1)

J. H. Kim, S. D. Lee, and S. Kumar, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics57(5), 5644–5650 (1998).
[CrossRef]

1994 (1)

M. J. Sansone, G. Khanarian, and M. S. Kwiatek, “Large Kerr effects in transparent encapsulated liquid crystals. II. Frequency response,” J. Appl. Phys.75(3), 1715 (1994).
[CrossRef]

Bae, K. S.

K. S. Bae, Y. J. Lee, C. J. Yu, H. J. Lee, J. H. Park, and J. H. Kim, “Low voltage and High Transmittance Polymer-Stabilized Blue-Phase Liquid Crystal Device by Combined In-Plane and Oblique Electric Field along the Horizontal Direction,” Jpn. J. Appl. Phys.51, 072201 (2012).
[CrossRef]

Chae, M. N.

J. H. Jung, K. S. Ha, M. N. Chae, W. S. Kang, G. D. Lee, and S. H. Lee, “Abnormal behavior in colour tracking characteristics of the fringe-field switching liquid crystal display,” Liq. Cryst.37(3), 303–309 (2010).
[CrossRef]

Cheng, H. C.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
[CrossRef]

Choi, H. S.

H. S. Choi, G. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett.98(13), 131905 (2011).
[CrossRef]

Fergason, J. L.

J. L. Fergason, “Polymer encapsulated nematic liquid crystals for displays and light control approaches,” SID Symp. Dig. 16, 68 (1985).

Gauza, S.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
[CrossRef]

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Disp. Tech.5(7), 250–256 (2009).
[CrossRef]

Ge, Z.

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Disp. Tech.5(7), 250–256 (2009).
[CrossRef]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett.92(18), 181109 (2008).
[CrossRef]

Ha, K. S.

J. H. Jung, K. S. Ha, M. N. Chae, W. S. Kang, G. D. Lee, and S. H. Lee, “Abnormal behavior in colour tracking characteristics of the fringe-field switching liquid crystal display,” Liq. Cryst.37(3), 303–309 (2010).
[CrossRef]

Haseba, Y.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide-temperature range,” Adv. Mater.17(19), 2311–2315 (2005).
[CrossRef]

Higuchi, G.

H. S. Choi, G. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett.98(13), 131905 (2011).
[CrossRef]

Jang, S. J.

S. J. Jang, J. W. Jung, H. R. Kim, M. Y. Jin, and J. H. Kim, “Stability-enhanced pixel-isolated method for flexible liquid crystal displays,” Jpn. J. Appl. Phys.44(9A), 6670–6673 (2005).
[CrossRef]

Jiao, M.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
[CrossRef]

Jin, M. Y.

S. J. Jang, J. W. Jung, H. R. Kim, M. Y. Jin, and J. H. Kim, “Stability-enhanced pixel-isolated method for flexible liquid crystal displays,” Jpn. J. Appl. Phys.44(9A), 6670–6673 (2005).
[CrossRef]

Jung, J. H.

J. H. Jung, K. S. Ha, M. N. Chae, W. S. Kang, G. D. Lee, and S. H. Lee, “Abnormal behavior in colour tracking characteristics of the fringe-field switching liquid crystal display,” Liq. Cryst.37(3), 303–309 (2010).
[CrossRef]

Jung, J. W.

S. J. Jang, J. W. Jung, H. R. Kim, M. Y. Jin, and J. H. Kim, “Stability-enhanced pixel-isolated method for flexible liquid crystal displays,” Jpn. J. Appl. Phys.44(9A), 6670–6673 (2005).
[CrossRef]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide-temperature range,” Adv. Mater.17(19), 2311–2315 (2005).
[CrossRef]

Kang, B. G.

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

Kang, S. W.

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

Kang, W. S.

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

J. H. Jung, K. S. Ha, M. N. Chae, W. S. Kang, G. D. Lee, and S. H. Lee, “Abnormal behavior in colour tracking characteristics of the fringe-field switching liquid crystal display,” Liq. Cryst.37(3), 303–309 (2010).
[CrossRef]

Khanarian, G.

M. J. Sansone, G. Khanarian, and M. S. Kwiatek, “Large Kerr effects in transparent encapsulated liquid crystals. II. Frequency response,” J. Appl. Phys.75(3), 1715 (1994).
[CrossRef]

Kikuchi, H.

H. S. Choi, G. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett.98(13), 131905 (2011).
[CrossRef]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide-temperature range,” Adv. Mater.17(19), 2311–2315 (2005).
[CrossRef]

Kim, H. R.

S. J. Jang, J. W. Jung, H. R. Kim, M. Y. Jin, and J. H. Kim, “Stability-enhanced pixel-isolated method for flexible liquid crystal displays,” Jpn. J. Appl. Phys.44(9A), 6670–6673 (2005).
[CrossRef]

Kim, J. H.

K. S. Bae, Y. J. Lee, C. J. Yu, H. J. Lee, J. H. Park, and J. H. Kim, “Low voltage and High Transmittance Polymer-Stabilized Blue-Phase Liquid Crystal Device by Combined In-Plane and Oblique Electric Field along the Horizontal Direction,” Jpn. J. Appl. Phys.51, 072201 (2012).
[CrossRef]

S. J. Jang, J. W. Jung, H. R. Kim, M. Y. Jin, and J. H. Kim, “Stability-enhanced pixel-isolated method for flexible liquid crystal displays,” Jpn. J. Appl. Phys.44(9A), 6670–6673 (2005).
[CrossRef]

J. H. Kim, S. D. Lee, and S. Kumar, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics57(5), 5644–5650 (1998).
[CrossRef]

Kim, M. K.

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

Kim, M. S.

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

Kim, M. Y.

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

Kim, S. S.

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett.92(18), 181109 (2008).
[CrossRef]

Kumar, S.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys.44(5A), 3115–3120 (2005).
[CrossRef]

J. H. Kim, S. D. Lee, and S. Kumar, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics57(5), 5644–5650 (1998).
[CrossRef]

Kwiatek, M. S.

M. J. Sansone, G. Khanarian, and M. S. Kwiatek, “Large Kerr effects in transparent encapsulated liquid crystals. II. Frequency response,” J. Appl. Phys.75(3), 1715 (1994).
[CrossRef]

Lee, G. D.

J. H. Jung, K. S. Ha, M. N. Chae, W. S. Kang, G. D. Lee, and S. H. Lee, “Abnormal behavior in colour tracking characteristics of the fringe-field switching liquid crystal display,” Liq. Cryst.37(3), 303–309 (2010).
[CrossRef]

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

Lee, H. J.

K. S. Bae, Y. J. Lee, C. J. Yu, H. J. Lee, J. H. Park, and J. H. Kim, “Low voltage and High Transmittance Polymer-Stabilized Blue-Phase Liquid Crystal Device by Combined In-Plane and Oblique Electric Field along the Horizontal Direction,” Jpn. J. Appl. Phys.51, 072201 (2012).
[CrossRef]

Lee, S. D.

J. H. Kim, S. D. Lee, and S. Kumar, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics57(5), 5644–5650 (1998).
[CrossRef]

Lee, S. H.

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

J. H. Jung, K. S. Ha, M. N. Chae, W. S. Kang, G. D. Lee, and S. H. Lee, “Abnormal behavior in colour tracking characteristics of the fringe-field switching liquid crystal display,” Liq. Cryst.37(3), 303–309 (2010).
[CrossRef]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett.92(18), 181109 (2008).
[CrossRef]

Lee, Y. J.

K. S. Bae, Y. J. Lee, C. J. Yu, H. J. Lee, J. H. Park, and J. H. Kim, “Low voltage and High Transmittance Polymer-Stabilized Blue-Phase Liquid Crystal Device by Combined In-Plane and Oblique Electric Field along the Horizontal Direction,” Jpn. J. Appl. Phys.51, 072201 (2012).
[CrossRef]

Li, Y.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
[CrossRef]

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide-temperature range,” Adv. Mater.17(19), 2311–2315 (2005).
[CrossRef]

Park, J. H.

K. S. Bae, Y. J. Lee, C. J. Yu, H. J. Lee, J. H. Park, and J. H. Kim, “Low voltage and High Transmittance Polymer-Stabilized Blue-Phase Liquid Crystal Device by Combined In-Plane and Oblique Electric Field along the Horizontal Direction,” Jpn. J. Appl. Phys.51, 072201 (2012).
[CrossRef]

Park, J. O.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys.44(5A), 3115–3120 (2005).
[CrossRef]

Park, J. W.

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett.92(18), 181109 (2008).
[CrossRef]

Qiu, L.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys.44(5A), 3115–3120 (2005).
[CrossRef]

Rao, L.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
[CrossRef]

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Disp. Tech.5(7), 250–256 (2009).
[CrossRef]

Sansone, M. J.

M. J. Sansone, G. Khanarian, and M. S. Kwiatek, “Large Kerr effects in transparent encapsulated liquid crystals. II. Frequency response,” J. Appl. Phys.75(3), 1715 (1994).
[CrossRef]

Srinivasarao, M.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys.44(5A), 3115–3120 (2005).
[CrossRef]

Wang, Q.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys.44(5A), 3115–3120 (2005).
[CrossRef]

Wu, S. T.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
[CrossRef]

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Disp. Tech.5(7), 250–256 (2009).
[CrossRef]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett.92(18), 181109 (2008).
[CrossRef]

Yan, J.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
[CrossRef]

Yoon, S.

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

Yu, C. J.

K. S. Bae, Y. J. Lee, C. J. Yu, H. J. Lee, J. H. Park, and J. H. Kim, “Low voltage and High Transmittance Polymer-Stabilized Blue-Phase Liquid Crystal Device by Combined In-Plane and Oblique Electric Field along the Horizontal Direction,” Jpn. J. Appl. Phys.51, 072201 (2012).
[CrossRef]

Adv. Mater. (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide-temperature range,” Adv. Mater.17(19), 2311–2315 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett.96(7), 071105 (2010).
[CrossRef]

H. S. Choi, G. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett.98(13), 131905 (2011).
[CrossRef]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett.92(18), 181109 (2008).
[CrossRef]

J. Appl. Phys. (1)

M. J. Sansone, G. Khanarian, and M. S. Kwiatek, “Large Kerr effects in transparent encapsulated liquid crystals. II. Frequency response,” J. Appl. Phys.75(3), 1715 (1994).
[CrossRef]

J. Disp. Tech. (1)

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Disp. Tech.5(7), 250–256 (2009).
[CrossRef]

J. Mater. Chem. (1)

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (3)

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys.44(5A), 3115–3120 (2005).
[CrossRef]

S. J. Jang, J. W. Jung, H. R. Kim, M. Y. Jin, and J. H. Kim, “Stability-enhanced pixel-isolated method for flexible liquid crystal displays,” Jpn. J. Appl. Phys.44(9A), 6670–6673 (2005).
[CrossRef]

K. S. Bae, Y. J. Lee, C. J. Yu, H. J. Lee, J. H. Park, and J. H. Kim, “Low voltage and High Transmittance Polymer-Stabilized Blue-Phase Liquid Crystal Device by Combined In-Plane and Oblique Electric Field along the Horizontal Direction,” Jpn. J. Appl. Phys.51, 072201 (2012).
[CrossRef]

Liq. Cryst. (1)

J. H. Jung, K. S. Ha, M. N. Chae, W. S. Kang, G. D. Lee, and S. H. Lee, “Abnormal behavior in colour tracking characteristics of the fringe-field switching liquid crystal display,” Liq. Cryst.37(3), 303–309 (2010).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

S. Yoon, M. Y. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. W. Kang, S. H. Lee, W. S. Kang, and G. D. Lee, “Analysis of electro-optic characteristics of polymer-stabilized blue phase liquid crystal driven by in-plane and fringe electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)529(1), 95–101 (2010).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. H. Kim, S. D. Lee, and S. Kumar, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics57(5), 5644–5650 (1998).
[CrossRef]

Other (3)

T. Kissel, S. Maretschek, C. Packhauser, J. Schneiders, and N. Seidel, in Microencapsulation, ed. S. Benita (CRC Press, New York, 2006), p. 103.

E. A. B. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 1991) p. 696.

J. L. Fergason, “Polymer encapsulated nematic liquid crystals for displays and light control approaches,” SID Symp. Dig. 16, 68 (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A schematic diagram depicting a device configuration of the nanoencapsulated LCD and how it operates, where the upper two magnified ones indicate the cross-sectional and horizontal view showing how LC molecules inside each nanocapsule are oriented upon the application of a bias voltage, respectively. (b) Measured angular optical anisotropy of the nanoencapsulated LCD with respect to varying applied voltages.

Fig. 2
Fig. 2

(a) Particle size distribution data of the LC nanocapsules prepared by a coacervation method and (b) SEM images taken after the LC nanocapsules are coated on the substrate.

Fig. 3
Fig. 3

Normalized voltage-transmittance characteristics of the nanoencapsulated LCDs at three different wavelengths which correspond to blue (473nm), green (532nm), and red (671nm), respectively. Measured and fitted data for each wavelength are denoted as filled dots and solid lines. Three insets are POM images taken at different bias voltage, where P, A, E denote the directions for polarizer, analyzer, and electric-field, respectively.

Fig. 4
Fig. 4

Measured viewing angle performances of the nanoencapsulated LCDs, where (a), (b), and (c) correspond to off-state luminance (0V), on-state luminance (30Vrms) and iso-contrast contour, respectively (EZ-Contrast, Eldim).

Tables (1)

Tables Icon

Table 1 Voltage-transmittance curve fitting results of weighting factor (α), saturated induced birefringence (Δn0), saturation electric field (Es), and Kerr constant of the nanoencapsulated LCDs at three wavelengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(V,λ)= T 0 sin 2 2Ψ(V) sin 2 (πdΔ n i (V) /λ )
Δ n i =Δ n 0 [1exp((E/ E s ) 2 )]
T/ T 0 = sin 2 2Ψ(V) sin 2 (απdΔ n i (V) /λ )

Metrics