Abstract

A novel microwave photonic link (MPL) with an improved spurious-free dynamic range (SFDR) based on a bidirectional use of a polarization modulator (PolM) in a Sagnac loop is proposed and demonstrated. The PolM in the loop functions, in conjunction with a polarization controller and a polarization beam combiner, as a Mach Zehnder modulator (MZM), which only modulates the incident light wave along the clockwise direction, leaving the counter-clockwise light wave unmodulated due to the velocity mismatch. Two clockwise intensity-modulated signals along two paths (Path 1 and Path 2) are generated, with one (Path 2) combined with the non-modulated light wave from the counter-clockwise direction to suppress part of the optical carrier. By controlling the power relationship between the two paths, the third-order intermodulation distortion (IMD3) can be fully suppressed, and thus an MPL with improved dynamic range is achieved. A theoretical analysis is presented, which is validated by an experiment. The IMD3 can be suppressed by 50 dB, giving an improvement in SFDR of 16 dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Cox, Analog optical links: Theory and Practice (Cambridge University Press, 2006)
  2. J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]
  3. X. Meng and A. Karim, “Microwave photonic link with carrier suppression for increased dynamic range,” Fiber Int. Opt.25(3), 161–174 (2006).
    [CrossRef]
  4. A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
    [CrossRef]
  5. T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech.58(11), 3039–3058 (2010).
    [CrossRef]
  6. Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” J. Lightwave Technol.58(11), 3327–3335 (2010).
  7. A. Fard, S. Gupta, and B. Jalali, “Digital broadband linearization technique and its application to photonic time-stretch analog-to-digital converter,” Opt. Lett.36(7), 1077–1079 (2011).
    [CrossRef] [PubMed]
  8. G. Zhang, S. Li, X. Zheng, H. Zhang, B. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave ROF links,” Opt. Express20(15), 17214–17219 (2012).
    [CrossRef]
  9. G. Zhang, X. Zheng, S. Li, H. Zhang, and B. Zhou, “Postcompensation for nonlinearity of Mach-Zehnder modulator in radio-over-fiber system based on second-order optical sideband processing,” Opt. Lett.37(5), 806–808 (2012).
    [CrossRef] [PubMed]
  10. R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
    [CrossRef]
  11. J. D. Bull, T. E. Darcie, J. Zhang, H. Kato, and N. A. F. Jaeger, “Broadband class-AB microwave-photonic link using polarization modulation,” IEEE Photon. Technol. Lett.18(9), 1073–1075 (2006).
    [CrossRef]
  12. T. E. Darcie, A. Moye, P. F. Driessen, J. D. Bull, H. Kato, and N. A. F. Jaeger, “Noise reduction in class-AB microwave-photonic links,” IEEE Int. Topical Meeting Microw. Photon. (2005) 329–332.
    [CrossRef]
  13. S. K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator,” Opt. Express19(8), 7865–7871 (2011).
    [CrossRef] [PubMed]
  14. M. Huang, J. Fu, and S. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett.37(11), 1823–1825 (2012).
    [CrossRef] [PubMed]
  15. X. Chen, W. Li, and J. P. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. (Submitted to).
  16. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE5577, 133–143 (2004).
    [CrossRef]
  17. W. Li and J. P. Yao, “Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability,” IEEE Photon. J.2(6), 954–959 (2010).
    [CrossRef]
  18. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010).
    [CrossRef] [PubMed]

2012 (3)

2011 (3)

2010 (4)

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech.58(11), 3039–3058 (2010).
[CrossRef]

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” J. Lightwave Technol.58(11), 3327–3335 (2010).

W. Li and J. P. Yao, “Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability,” IEEE Photon. J.2(6), 954–959 (2010).
[CrossRef]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010).
[CrossRef] [PubMed]

2009 (1)

2006 (2)

X. Meng and A. Karim, “Microwave photonic link with carrier suppression for increased dynamic range,” Fiber Int. Opt.25(3), 161–174 (2006).
[CrossRef]

J. D. Bull, T. E. Darcie, J. Zhang, H. Kato, and N. A. F. Jaeger, “Broadband class-AB microwave-photonic link using polarization modulation,” IEEE Photon. Technol. Lett.18(9), 1073–1075 (2006).
[CrossRef]

2004 (1)

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

1995 (1)

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
[CrossRef]

Agarwal, A.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

Banwell, T.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

Bull, J. D.

J. D. Bull, T. E. Darcie, J. Zhang, H. Kato, and N. A. F. Jaeger, “Broadband class-AB microwave-photonic link using polarization modulation,” IEEE Photon. Technol. Lett.18(9), 1073–1075 (2006).
[CrossRef]

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Chen, X.

X. Chen, W. Li, and J. P. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. (Submitted to).

Clark, T. R.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech.58(11), 3039–3058 (2010).
[CrossRef]

Cowan, G. E. R.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” J. Lightwave Technol.58(11), 3327–3335 (2010).

Dalton, L. R.

Darcie, T. E.

J. D. Bull, T. E. Darcie, J. Zhang, H. Kato, and N. A. F. Jaeger, “Broadband class-AB microwave-photonic link using polarization modulation,” IEEE Photon. Technol. Lett.18(9), 1073–1075 (2006).
[CrossRef]

Dennis, M. L.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech.58(11), 3039–3058 (2010).
[CrossRef]

Esman, R. D.

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
[CrossRef]

Fairburn, M.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Fard, A.

Fetterman, H. R.

Fu, J.

Ghanipour, P.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Gupta, S.

Hoekman, M.

Hraimel, B.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” J. Lightwave Technol.58(11), 3327–3335 (2010).

Huang, M.

Jaeger, N. A. F.

J. D. Bull, T. E. Darcie, J. Zhang, H. Kato, and N. A. F. Jaeger, “Broadband class-AB microwave-photonic link using polarization modulation,” IEEE Photon. Technol. Lett.18(9), 1073–1075 (2006).
[CrossRef]

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Jalali, B.

Karim, A.

X. Meng and A. Karim, “Microwave photonic link with carrier suppression for increased dynamic range,” Fiber Int. Opt.25(3), 161–174 (2006).
[CrossRef]

Kato, H.

J. D. Bull, T. E. Darcie, J. Zhang, H. Kato, and N. A. F. Jaeger, “Broadband class-AB microwave-photonic link using polarization modulation,” IEEE Photon. Technol. Lett.18(9), 1073–1075 (2006).
[CrossRef]

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Kim, S. K.

Leinse, A.

Li, S.

Li, W.

W. Li and J. P. Yao, “Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability,” IEEE Photon. J.2(6), 954–959 (2010).
[CrossRef]

X. Chen, W. Li, and J. P. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. (Submitted to).

Liu, T.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” J. Lightwave Technol.58(11), 3327–3335 (2010).

Liu, W.

Marpaung, D.

Meng, X.

X. Meng and A. Karim, “Microwave photonic link with carrier suppression for increased dynamic range,” Fiber Int. Opt.25(3), 161–174 (2006).
[CrossRef]

O’Connor, S. R.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech.58(11), 3039–3058 (2010).
[CrossRef]

Pan, S.

Pei, Q.

Reid, A.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Roeloffzen, C.

Shen, Y.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” J. Lightwave Technol.58(11), 3327–3335 (2010).

Toliver, P.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

Williams, K. J.

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
[CrossRef]

Woodward, T. K.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

Wu, K.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” J. Lightwave Technol.58(11), 3327–3335 (2010).

Xiang, P.

Yao, J. P.

W. Li and J. P. Yao, “Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability,” IEEE Photon. J.2(6), 954–959 (2010).
[CrossRef]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

X. Chen, W. Li, and J. P. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. (Submitted to).

Zhang, G.

Zhang, H.

Zhang, J.

J. D. Bull, T. E. Darcie, J. Zhang, H. Kato, and N. A. F. Jaeger, “Broadband class-AB microwave-photonic link using polarization modulation,” IEEE Photon. Technol. Lett.18(9), 1073–1075 (2006).
[CrossRef]

Zhang, X.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” J. Lightwave Technol.58(11), 3327–3335 (2010).

Zheng, X.

Zhou, B.

Fiber Int. Opt. (1)

X. Meng and A. Karim, “Microwave photonic link with carrier suppression for increased dynamic range,” Fiber Int. Opt.25(3), 161–174 (2006).
[CrossRef]

IEEE Photon. J. (1)

W. Li and J. P. Yao, “Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability,” IEEE Photon. J.2(6), 954–959 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

X. Chen, W. Li, and J. P. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. (Submitted to).

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
[CrossRef]

J. D. Bull, T. E. Darcie, J. Zhang, H. Kato, and N. A. F. Jaeger, “Broadband class-AB microwave-photonic link using polarization modulation,” IEEE Photon. Technol. Lett.18(9), 1073–1075 (2006).
[CrossRef]

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech.58(11), 3039–3058 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” J. Lightwave Technol.58(11), 3327–3335 (2010).

J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Other (2)

T. E. Darcie, A. Moye, P. F. Driessen, J. D. Bull, H. Kato, and N. A. F. Jaeger, “Noise reduction in class-AB microwave-photonic links,” IEEE Int. Topical Meeting Microw. Photon. (2005) 329–332.
[CrossRef]

C. Cox, Analog optical links: Theory and Practice (Cambridge University Press, 2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the proposed microwave photonic link based on a bidirectional use of a PolM in a Sagnac loop.

Fig. 2
Fig. 2

Electrical spectra of the RF signal at the output of the PD when a two-tone RF signal is applied to the PolM. (a) Only Path 1 is connected, and (b) both Path 1 and Path 2 are connected. RBW: 30 kHz.

Fig. 3
Fig. 3

Measured RF powers of the fundamental signal and IMD3 at the output of the PD when a two-tone signal is applied to the PolM. (a) Only Path 1 is connected, and (b) both Path 1 and Path 2 are connected.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ E s E f ]=[ E 1 { cos[ ω o t+βϕ( t )/2θ ]+cos[ ω o tβϕ( t )/2 ] } E 2 { cos[ ω o t+βϕ( t )/2θ ]cos[ ω o tβϕ( t )/2 ]+cos( ω o tθ )cos( ω o t ) } ]
I=ac[ ( | E s | 2 + | E f | 2 ) ]= P s cos[ βϕ( t )π/2 ] + P f { cos[ βϕ( t )π/2 ] 2 sin[ βϕ( t )/2π/4 ]+ 2 sin[ βϕ( t )/2+π/4 ] } = P s sin[ βϕ( t ) ] + P f { sin[ βϕ( t ) ]2 2 sin[ βϕ( t )/2π/4 ] } = P s sin[ βϕ( t ) ] + P f { sin[ βϕ( t ) ]2sin[ βϕ( t )/2 ]+2cos[ βϕ( t )/2 ] }
I P s [ βϕ( t ) β 3 ϕ 3 ( t )/6 ] P f { βϕ( t ) β 3 ϕ 3 ( t )/6+2[ βϕ( t )/2 β 3 ϕ 3 ( t )/48 ] } +2 P f [ 1 β 2 ϕ 2 ( t )/8 ] =( P s 2 P f )βϕ( t )( P s 5 P f /4 ) β 3 ϕ 3 ( t )/6 +2 P f [ 1 β 2 ϕ 2 ( t )/8 ]
P s 5 P f /4=0
20 log 10 | P s P s 2 P f |=20 log 10 | P s P s 2×4 P s /5 |=20 log 10 | 5 3 |4.4dB

Metrics