Abstract

We experimentally demonstrate a highly filtering-tolerant multi-modulus equalization (MMEQ) process for very aggressively spectrum-shaped 9-ary quadrature-amplitude-modulation (9-QAM)-like polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signal to achieve 400-Gb/s wavelength-division-multiplexing (WDM) channels on the 100-GHz grid for ultra-long-haul reach and high tolerance of the filter narrowing effect caused by reconfigurable optical add-drop multiplexers (ROADMs). We successfully transmitted 8 channels 480-Gb/s super-Nyquist (channel occupancy much less than signal baud rate) WDM signals at 100-GHz grid over 25 × 200 km conventional single-mode fiber-28 (SMF-28) with post Raman amplification and 25 ROADMs at a net spectral efficiency (SE) of 4b/s/Hz, after excluding the 20% soft-decision forward-error-correction (FEC) overhead. The system performance is significantly enhanced by the MMEQ based on 9-QAM-like constellations compared to the conventional 4 point QPSK constellation. A record transmission distance over conventional SMF-28 with a large number of ROADMs is firstly reported on the 400-Gb/s channels at 100-GHz grid.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000 km of ULAF and five 80-GHz-grid ROADMs,” Proc. OFC/NFOEC2010, San Diego, California, paper PDPC2.
  2. X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s,50-GHz-spaced,PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” Proc. OFC/NFOEC2011, Los Angeles, California, paper PDPB3.
  3. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “800 km transmission of 5x450-Gb/s PDM-32QAM on the 50 GHz grid using electrical and optical spectral shaping,” Proc. ECOC2011, Geneva, Switzerland, paper We.8.B.2.
  4. T. Xia, G. Wellbrock, Y. Huang, E. Ip, M. Huang, Y. Shao, T. Wang, Y. Aono, T. Tajima, S. Murakami, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” Proc. OFC/NFOEC2011, Los Angeles, California, paper PDPA3.
  5. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1, 200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” Proc. ECOC2010, Torino, Italy, paper PDP 2.2.
    [CrossRef]
  6. Y.-K. Huang, E. Ip, M.-F. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Jr., Y. Aono, T. Tajima, and T. Wang, “10x456-Gb/s DP-16 QAM transmission over 8x100 km of ULAF using coherent detection with a 30-GHz analog-to-digital converter,” Proc. OECC2010, Japan, paper PDP3.
  7. X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000km transmission of 50GHz spaced, 10x494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” Proc. OFC/NFOEC2012, Los Angeles, California, paper PDP5C.6.
  8. J. Yu, Z. Dong, H. Chien, Z. Jia, M. Gunkel, and A. Schippel, “Field trial Nyquist-WDM transmission of 8×216.4Gb/s PDM-CSRZ-QPSK exceeding 4b/s/Hz spectral efficiency,” Proc. OFC/NFOEC2012, Los Angeles, California, paper PDP5D.3.
  9. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol.30(11), 1664–1676 (2012).
    [CrossRef]
  10. Z. Jia, J. Yu, H. Chien, Z. Dong, and D. Di Huo, “Field transmission of 100 G and beyond: multiple baud rates and mixed line rates using Nyquist-WDM technology,” J. Lightwave Technol.30(24), 3793–3804 (2012).
    [CrossRef]
  11. H. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(24), 3965–3971 (2012).
    [CrossRef]
  12. J. Zhang, J. Yu, N. Chi, Z. Dong, J. Yu, X. Li, L. Tao, and Y. Shao, “Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing,” J. Lightwave Technol.31(7), 1073–1078 (2013).
    [CrossRef]
  13. B. Huang, J. Zhang, J. Yu, Z. Dong, X. Li, H. Ou, N. Chi, and W. Liu, “Robust 9-QAM digital recovery for spectrum shaped coherent QPSK signal,” Opt. Express21(6), 7216–7221 (2013).
    [CrossRef] [PubMed]

2013

2012

Andrekson, P. A.

Chi, N.

Chien, H.

Di Huo, D.

Dong, Z.

Eriksson, T.

Huang, B.

Jia, Z.

Karlsson, M.

Li, J.

Li, X.

Liu, W.

Ou, H.

Shao, Y.

Tao, L.

Tipsuwannakul, E.

Xiao, X.

Yu, J.

Zhang, J.

J. Lightwave Technol.

Opt. Express

Other

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000 km of ULAF and five 80-GHz-grid ROADMs,” Proc. OFC/NFOEC2010, San Diego, California, paper PDPC2.

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s,50-GHz-spaced,PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” Proc. OFC/NFOEC2011, Los Angeles, California, paper PDPB3.

X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “800 km transmission of 5x450-Gb/s PDM-32QAM on the 50 GHz grid using electrical and optical spectral shaping,” Proc. ECOC2011, Geneva, Switzerland, paper We.8.B.2.

T. Xia, G. Wellbrock, Y. Huang, E. Ip, M. Huang, Y. Shao, T. Wang, Y. Aono, T. Tajima, S. Murakami, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” Proc. OFC/NFOEC2011, Los Angeles, California, paper PDPA3.

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1, 200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” Proc. ECOC2010, Torino, Italy, paper PDP 2.2.
[CrossRef]

Y.-K. Huang, E. Ip, M.-F. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Jr., Y. Aono, T. Tajima, and T. Wang, “10x456-Gb/s DP-16 QAM transmission over 8x100 km of ULAF using coherent detection with a 30-GHz analog-to-digital converter,” Proc. OECC2010, Japan, paper PDP3.

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000km transmission of 50GHz spaced, 10x494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” Proc. OFC/NFOEC2012, Los Angeles, California, paper PDP5C.6.

J. Yu, Z. Dong, H. Chien, Z. Jia, M. Gunkel, and A. Schippel, “Field trial Nyquist-WDM transmission of 8×216.4Gb/s PDM-CSRZ-QPSK exceeding 4b/s/Hz spectral efficiency,” Proc. OFC/NFOEC2012, Los Angeles, California, paper PDP5D.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. (a) Measured pass-band transfer function of the 50GHz-grid WSS. (b) Optical spectra of 240-Gb/s single sub-channel signals before and after the 50GHz-grid WSS. (c) Constellation before optical spectrum shaping. (d) Constellation after optical spectrum shaping. (e) Filtering from the 100-GHZ WSS pass-band. (ECL: external cavity laser; IQ Mod.: IQ modulator; BW: bandwidth; WSS: wavelength selective switch).

Fig. 2
Fig. 2

An illustration of major DSP blocks based on MMEQ.

Fig. 3
Fig. 3

(a) The optical spectrum of 8 channels of 480-Gb/s signal before transmission; (b) The BTB BER results versus OSNR under different filtering bandwidth.

Fig. 4
Fig. 4

The BER of Channel 4 versus transmission distance with and without ROADMS.

Fig. 5
Fig. 5

The BER of 8 channels after 5000-km SMF-28 transmission with and without 25 ROADMs.

Metrics