Abstract

Quantitative analysis of the atmospheric effects on observations made by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) has been performed. The differences between observed brightness temperatures at the top of the atmosphere and at the bottom of the atmosphere were analyzed using a database of simulated observations, which were configured to replicate AMSR-E data. The differences between observed brightness temperatures at the top of the atmosphere and land surface-emitted brightness temperatures were also computed. Quantitative results show that the atmosphere has different effects on brightness temperatures in different AMSR-E channels. Atmospheric effects can be neglected at 6.925 and 10.65 GHz, when the standard deviation is less than 1 K. However, at other frequencies and polarizations, atmospheric effects on observations should not be neglected. An atmospheric correction algorithm was developed at 18.7 GHz vertical polarization, based on the classic split-window algorithm used in thermal remote sensing. Land surface emission can be estimated with RMSE = 0.99 K using the proposed method. Using the known land surface emissivity, Land Surface Temperature (LST) can be retrieved. The RMSE of retrieved LST is 1.17 K using the simulated data.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F.  Nerry, M. P.  Stoll, A.  Malaplate, “Multi temporal regression method for mid infrared [3-5µm] emissivity outdoor measurements,” Opt. Express 12(26), 6574–6588 (2004).
    [CrossRef] [PubMed]
  2. X. Y.  OuYang, N.  Wang, H.  Wu, Z.-L.  Li, “Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data,” Opt. Express 18(2), 544–550 (2010).
    [CrossRef] [PubMed]
  3. Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
    [CrossRef]
  4. Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
    [CrossRef]
  5. C.  Prigent, W. B.  Rossow, E.  Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. 102(D18), 21867–21890 (1997).
    [CrossRef]
  6. F.  Karbou, C.  Prigent, L.  Eymard, J. R.  Pardo, “Microwave land emissivity calculations using AMSU measurements,” IEEE Trans. Geosci. Remote 43(5), 948–959 (2005).
    [CrossRef]
  7. J. B. Snider, E. R. Westwater, and L. S. Fedor, “Radiometric correction for atmospheric effects in surface sensing from aircraft and satellites,” in Passive Microwave Remoter Sensing of Land-Atmosphere Interactions, E.D. B.J. Choudhury, Y. H. Kerr, and P. Pampaloni, ed. (VSP, Zeist, Netherlands, 1994).
  8. R. Fuhrhop and C. Simmer, MWMOD User Manual, Version 1.12 (Institut für Meereskunde, Kiel, Germany, 1998).
  9. B. J.  Choudhury, T. J.  Schmugge, A.  Chang, R. W.  Newton, “Effect of surface roughness on the microwave emission from soils,” J. Geophys. Res. 84(C9), 5699–5706 (1979).
    [CrossRef]
  10. J. R.  Wang, B. J.  Choudhury, “Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency,” J. Geophys. Res. 86(C6), 5277–5282 (1981).
    [CrossRef]
  11. A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, Boston, 1994).
  12. K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003).
    [CrossRef]
  13. F. Z.  Weng, N. C.  Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res. 103(D8), 8839–8848 (1998).
    [CrossRef]
  14. F.  Becker, Z.-L.  Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
    [CrossRef]
  15. E. G.  Njoku, L.  Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote 37(1), 79–93 (1999).
    [CrossRef]

2013 (2)

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

2010 (1)

2005 (1)

F.  Karbou, C.  Prigent, L.  Eymard, J. R.  Pardo, “Microwave land emissivity calculations using AMSU measurements,” IEEE Trans. Geosci. Remote 43(5), 948–959 (2005).
[CrossRef]

2004 (1)

2003 (1)

K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003).
[CrossRef]

1999 (1)

E. G.  Njoku, L.  Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote 37(1), 79–93 (1999).
[CrossRef]

1998 (1)

F. Z.  Weng, N. C.  Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res. 103(D8), 8839–8848 (1998).
[CrossRef]

1997 (1)

C.  Prigent, W. B.  Rossow, E.  Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. 102(D18), 21867–21890 (1997).
[CrossRef]

1990 (1)

F.  Becker, Z.-L.  Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
[CrossRef]

1981 (1)

J. R.  Wang, B. J.  Choudhury, “Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency,” J. Geophys. Res. 86(C6), 5277–5282 (1981).
[CrossRef]

1979 (1)

B. J.  Choudhury, T. J.  Schmugge, A.  Chang, R. W.  Newton, “Effect of surface roughness on the microwave emission from soils,” J. Geophys. Res. 84(C9), 5699–5706 (1979).
[CrossRef]

Becker, F.

F.  Becker, Z.-L.  Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
[CrossRef]

Chang, A.

B. J.  Choudhury, T. J.  Schmugge, A.  Chang, R. W.  Newton, “Effect of surface roughness on the microwave emission from soils,” J. Geophys. Res. 84(C9), 5699–5706 (1979).
[CrossRef]

Chen, K. S.

K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003).
[CrossRef]

Choudhury, B. J.

J. R.  Wang, B. J.  Choudhury, “Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency,” J. Geophys. Res. 86(C6), 5277–5282 (1981).
[CrossRef]

B. J.  Choudhury, T. J.  Schmugge, A.  Chang, R. W.  Newton, “Effect of surface roughness on the microwave emission from soils,” J. Geophys. Res. 84(C9), 5699–5706 (1979).
[CrossRef]

Eymard, L.

F.  Karbou, C.  Prigent, L.  Eymard, J. R.  Pardo, “Microwave land emissivity calculations using AMSU measurements,” IEEE Trans. Geosci. Remote 43(5), 948–959 (2005).
[CrossRef]

Fung, A. K.

K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003).
[CrossRef]

Grody, N. C.

F. Z.  Weng, N. C.  Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res. 103(D8), 8839–8848 (1998).
[CrossRef]

Karbou, F.

F.  Karbou, C.  Prigent, L.  Eymard, J. R.  Pardo, “Microwave land emissivity calculations using AMSU measurements,” IEEE Trans. Geosci. Remote 43(5), 948–959 (2005).
[CrossRef]

Li, L.

E. G.  Njoku, L.  Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote 37(1), 79–93 (1999).
[CrossRef]

Li, Q.

K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003).
[CrossRef]

Li, Z.-L.

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

X. Y.  OuYang, N.  Wang, H.  Wu, Z.-L.  Li, “Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data,” Opt. Express 18(2), 544–550 (2010).
[CrossRef] [PubMed]

F.  Becker, Z.-L.  Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
[CrossRef]

Malaplate, A.

Matthews, E.

C.  Prigent, W. B.  Rossow, E.  Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. 102(D18), 21867–21890 (1997).
[CrossRef]

Nerry, F.

Newton, R. W.

B. J.  Choudhury, T. J.  Schmugge, A.  Chang, R. W.  Newton, “Effect of surface roughness on the microwave emission from soils,” J. Geophys. Res. 84(C9), 5699–5706 (1979).
[CrossRef]

Njoku, E. G.

E. G.  Njoku, L.  Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote 37(1), 79–93 (1999).
[CrossRef]

OuYang, X. Y.

Pardo, J. R.

F.  Karbou, C.  Prigent, L.  Eymard, J. R.  Pardo, “Microwave land emissivity calculations using AMSU measurements,” IEEE Trans. Geosci. Remote 43(5), 948–959 (2005).
[CrossRef]

Prigent, C.

F.  Karbou, C.  Prigent, L.  Eymard, J. R.  Pardo, “Microwave land emissivity calculations using AMSU measurements,” IEEE Trans. Geosci. Remote 43(5), 948–959 (2005).
[CrossRef]

C.  Prigent, W. B.  Rossow, E.  Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. 102(D18), 21867–21890 (1997).
[CrossRef]

Qiu, S.

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

Ren, H.

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

Rossow, W. B.

C.  Prigent, W. B.  Rossow, E.  Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. 102(D18), 21867–21890 (1997).
[CrossRef]

Schmugge, T. J.

B. J.  Choudhury, T. J.  Schmugge, A.  Chang, R. W.  Newton, “Effect of surface roughness on the microwave emission from soils,” J. Geophys. Res. 84(C9), 5699–5706 (1979).
[CrossRef]

Shi, J. C.

K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003).
[CrossRef]

Sobrino, J. A.

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

Stoll, M. P.

Tang, B.-H.

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

Triggo, I. F.

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

Tsang, L.

K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003).
[CrossRef]

Wan, Z.

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

Wang, J. R.

J. R.  Wang, B. J.  Choudhury, “Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency,” J. Geophys. Res. 86(C6), 5277–5282 (1981).
[CrossRef]

Wang, N.

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

X. Y.  OuYang, N.  Wang, H.  Wu, Z.-L.  Li, “Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data,” Opt. Express 18(2), 544–550 (2010).
[CrossRef] [PubMed]

Weng, F. Z.

F. Z.  Weng, N. C.  Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res. 103(D8), 8839–8848 (1998).
[CrossRef]

Wu, H.

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

X. Y.  OuYang, N.  Wang, H.  Wu, Z.-L.  Li, “Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data,” Opt. Express 18(2), 544–550 (2010).
[CrossRef] [PubMed]

Wu, T. D.

K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003).
[CrossRef]

Yan, G. J.

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

IEEE Trans. Geosci. Remote (3)

F.  Karbou, C.  Prigent, L.  Eymard, J. R.  Pardo, “Microwave land emissivity calculations using AMSU measurements,” IEEE Trans. Geosci. Remote 43(5), 948–959 (2005).
[CrossRef]

K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003).
[CrossRef]

E. G.  Njoku, L.  Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote 37(1), 79–93 (1999).
[CrossRef]

Int. J. Remote Sens. (2)

F.  Becker, Z.-L.  Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
[CrossRef]

Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013).
[CrossRef]

J. Geophys. Res. (4)

C.  Prigent, W. B.  Rossow, E.  Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. 102(D18), 21867–21890 (1997).
[CrossRef]

F. Z.  Weng, N. C.  Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res. 103(D8), 8839–8848 (1998).
[CrossRef]

B. J.  Choudhury, T. J.  Schmugge, A.  Chang, R. W.  Newton, “Effect of surface roughness on the microwave emission from soils,” J. Geophys. Res. 84(C9), 5699–5706 (1979).
[CrossRef]

J. R.  Wang, B. J.  Choudhury, “Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency,” J. Geophys. Res. 86(C6), 5277–5282 (1981).
[CrossRef]

Opt. Express (2)

Remote Sens. Environ. (1)

Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[CrossRef]

Other (3)

A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, Boston, 1994).

J. B. Snider, E. R. Westwater, and L. S. Fedor, “Radiometric correction for atmospheric effects in surface sensing from aircraft and satellites,” in Passive Microwave Remoter Sensing of Land-Atmosphere Interactions, E.D. B.J. Choudhury, Y. H. Kerr, and P. Pampaloni, ed. (VSP, Zeist, Netherlands, 1994).

R. Fuhrhop and C. Simmer, MWMOD User Manual, Version 1.12 (Institut für Meereskunde, Kiel, Germany, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Histogram of simulated emissivity.

Fig. 2
Fig. 2

Comparison between the TBp_toa and TBp_boa at vertical polarization (a) and horizontal polarization (b).

Fig. 3
Fig. 3

Comparison between the TBp_toa and TBp_land at vertical polarization (a) and horizontal polarization (b).

Fig. 4
Fig. 4

Linear relationships between w and t at 18.7 and 23.8 GHz.

Fig. 5
Fig. 5

The difference between the simulated values of TB18.7v_toa and TB18.7v_land. △T1 is the difference between the simulated values of TB18.7v_toa and TB18.7v_land.T2 is the difference between the estimated values of TB18.7v_land using Eq. (11) and TB18.7v_land.

Fig. 6
Fig. 6

The difference between Ts estimated by Eq. (12) and the actual value of Ts.

Fig. 7
Fig. 7

Histograms of the results of Eqs. (13) and (14) using the simulated data.

Fig. 8
Fig. 8

Histogram of the results computed by Eq. (15), based on the simulated data.

Tables (2)

Tables Icon

Table 1 The mean and standard deviation (STD) of the △TBv and △TBH for all channels of AMSR-E.

Tables Icon

Table 2 The mean and STD of the △T’Bv and △T’BH for all channels of AMSR-E.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T B p _toa = T B p _boa ×t+ T au ,
T B p _boa = T B p _land +[ T ad + T sky ×t ]×(1 e p ),
T B p _land = T s × e p ,
T ad = T au +2.11, R 2 =0.99.
t 18.7 =0.003×w+0.975, R 2 =0.99,
t 23.8 =0.007×w+0.951, R 2 =0.99.
T au = T ae ×(1t).
T B18.7v_toa = T s +( T ae T s )×(1 b 18.7 ) a 18.7 ×w×( T ae T s )2 a 18.7 × b 18.7 ×w× T s + r 18.7V × a 18.7 ×w×( T ae T s )×(12 b 18.7 ) a 18.7 2 × w 2 × r 18.7V × T ae + r 18.7V × b 18.7 ×(1 b 18.7 )× ( T ae T s ) s b 18.7 2 × r 18.7V ×T +2.11× r 18.7V ×( a 18.7 ×w+ b 18.7 ),
T B23.8v_toa = T s +( T ae T s )×(1 b 23.8 ) a 23.8 ×w×( T ae T s )2 a 23.8 × b 23.8 ×w× T s + r 23.8V × a 23.8 ×w×( T ae T s )×(12 b 23.8 ) a 23.8 2 × w 2 × r 23.8V × T ae + r 23.8V × b 23.8 ×(1 b 23.8 )×( T ae T s ) b 23.8 2 × r 23.8V × T s +2.11× r 23.8V ×( a 23.8 ×w+ b 23.8 ),
T B18.7v_land = A 1 × T B18.7v_toa + A 2 ×( T B18.7v_toa T B23.8v_toa ),
T B18.7v_land = T B18.7v_toa +0.506×( T B18.7v_toa T B23.8v_toa ) 0.019× ( T B18.7v_toa T B23.8v_toa ) 2 0.085.
T s = T B18.7v_toa e 18.7v + 0.506×( T B18.7v_toa T B23.8v_toa ) e 18.7v 0.019× ( T B18.7v_toa T B23.8v_toa ) 2 e 18.7v 0.085 e 18.7v .
T s T B18.7v_toa = 1.5060.038×( T B18.7v_toa T B23.8v_toa ) e 18.7v ,
T s T B23.8v_toa = 0.506+0.038×( T B18.7v_toa T B23.8v_toa ) e 18.7v ,
T s e 18.7v = T B18.7v_toa +0.506×( T B18.7v_toa T B23.8v_toa )0.019× ( T B18.7v_toa T B23.8v_toa ) 2 e 18.7v 2 .

Metrics