Abstract

A new method of simulating photodiode nonlinearities is proposed. This model includes the effects of non-uniform absorption in three dimensions, self-heating, and is compatible with circuit components defined in the frequency domain, such as transmission lines. The saturated output power and third order output intercept points of two different waveguide photodiodes are simulated, with excellent agreement between measurement and theory. The technique is then used to provide guidance for the future design of linear waveguide-based photodetectors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 1484–1496 (1996).
  2. Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron.47(10), 1312–1319 (2011).
    [CrossRef]
  3. M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol.8(8), 1137–1144 (1990).
    [CrossRef]
  4. J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).
  5. A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol.26(15), 2373–2378 (2008).
    [CrossRef]
  6. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
    [CrossRef]
  7. S. A. Malyshev, A. L. Chizh, and Y. G. Vasileuski, “Mixed device/circuit model of the high-speed p-i-n photodiode,”in Proceedings of the 5th International Conference on Numerical Simulation of Optoelectronic Devices(Institute of Electrical and Electronic Engineers, New York, 2005), pp. 45–46.
    [CrossRef]
  8. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express15(21), 13965–13971 (2007).
    [CrossRef] [PubMed]
  9. A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power Silicon-Germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech.58(11), 3336–3343 (2010).
    [CrossRef]
  10. A. Beling, Y. Fu, Z. Li, H. Pan, Q. Zhou, A. Cross, M. Piels, J. Peters, J. E. Bowers, and J. C. Campbell, “Modified uni-traveling carrier photodiodes heterogeneously integrated on Silicon-on-insulator (SOI),” in Conference on Integrated Photonics Research and Silicon Nanophotonics, (Optical Society of America, 2012), paper IM2A.2.
    [CrossRef]
  11. K. Giboney, J. E. Bowers, and M. J. Rodwell, “Travelling-wave photodetectors,” in IEEE MTT-S Microwave Symposium Digest(Institute of Electrical and Electronic Engineers, New York, 1995), pp. 159–162.
  12. S. Maas, Nonlinear Microwave and RF Circuits (Artech House, 1997).
  13. G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett.12(10), 378–380 (2002).
    [CrossRef]
  14. R. Lewen, S. Irmscher, and U. Eriksson, “Microwave CAD circuit modeling of a traveling-wave electroabsorption modulator,” IEEE Trans. Microw. Theory Tech.51(4), 1117–1128 (2003).
    [CrossRef]
  15. S. Adachi, Handbook on Physical Properties of Semiconductors vol. 1 (Springer-Verlag, 2004), Chap. 3.
  16. U. K. Mishra and J. S. Singh, Semiconductor Device Physics and Design (Springer 2008).
  17. M. Piels, “Si/Ge photodiodes for coherent and analog communication,” Ph.D. Dissertation, Dept. Elect. and Comp. Eng., Univ. California, Santa Barbara, 2013.
  18. T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).
  19. M. Piels, A. Ramaswamy, J. E. Bowers, T. Yin, D. Kendig, and A. Shakouri, “Three-dimensional thermal analysis of a waveguide Ge/Si photodiode,” in Conference on Integrated Photonics Research and Silicon Nanophotonics, (Optical Society of America, 2010), paper ITuA5.
    [CrossRef]
  20. Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011).
    [CrossRef] [PubMed]
  21. K. J. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol.17(8), 1443–1454 (1999).
    [CrossRef]
  22. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
    [CrossRef]
  23. J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
    [CrossRef]
  24. H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).
  25. A. Beling, A. S. Cross, M. Piels, J. Peters, Y. Fu, Q. Zhou, J. E. Bowers, and J. C. Campbell, “High-power high-speed waveguide photodiodes and photodiode arrays heterogeneously integrated on Silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OM2J.1.
    [CrossRef]
  26. J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
    [CrossRef] [PubMed]

2011

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron.47(10), 1312–1319 (2011).
[CrossRef]

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
[CrossRef] [PubMed]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011).
[CrossRef] [PubMed]

2010

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power Silicon-Germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech.58(11), 3336–3343 (2010).
[CrossRef]

2008

2007

2006

2004

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

2003

R. Lewen, S. Irmscher, and U. Eriksson, “Microwave CAD circuit modeling of a traveling-wave electroabsorption modulator,” IEEE Trans. Microw. Theory Tech.51(4), 1117–1128 (2003).
[CrossRef]

2002

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett.12(10), 378–380 (2002).
[CrossRef]

2000

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

1999

1996

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 1484–1496 (1996).

1995

J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).

1990

M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol.8(8), 1137–1144 (1990).
[CrossRef]

Beling, A.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron.47(10), 1312–1319 (2011).
[CrossRef]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011).
[CrossRef] [PubMed]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol.26(15), 2373–2378 (2008).
[CrossRef]

Bovington, J.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Bowers, J. E.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011).
[CrossRef] [PubMed]

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power Silicon-Germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech.58(11), 3336–3343 (2010).
[CrossRef]

Caissie, J. M.

Campbell, J. C.

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011).
[CrossRef] [PubMed]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron.47(10), 1312–1319 (2011).
[CrossRef]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol.26(15), 2373–2378 (2008).
[CrossRef]

Cannon, D.

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

Chen, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol.26(15), 2373–2378 (2008).
[CrossRef]

Chen, H.-W.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Chetrit, Y.

Cohen, R.

Dagenais, M.

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 1484–1496 (1996).

Danielson, D. T.

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

de Cremoux, B.

M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol.8(8), 1137–1144 (1990).
[CrossRef]

Decoster, D.

J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).

Dentan, M.

M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol.8(8), 1137–1144 (1990).
[CrossRef]

Eriksson, U.

R. Lewen, S. Irmscher, and U. Eriksson, “Microwave CAD circuit modeling of a traveling-wave electroabsorption modulator,” IEEE Trans. Microw. Theory Tech.51(4), 1117–1128 (2003).
[CrossRef]

Esman, R. D.

K. J. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol.17(8), 1443–1454 (1999).
[CrossRef]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 1484–1496 (1996).

Fang, A. W.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Fu, Y.

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011).
[CrossRef] [PubMed]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron.47(10), 1312–1319 (2011).
[CrossRef]

Furuta, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

Fushimi, H.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

Hanawa, I.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett.12(10), 378–380 (2002).
[CrossRef]

Harari, J.

J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).

Irmscher, S.

R. Lewen, S. Irmscher, and U. Eriksson, “Microwave CAD circuit modeling of a traveling-wave electroabsorption modulator,” IEEE Trans. Microw. Theory Tech.51(4), 1117–1128 (2003).
[CrossRef]

Ishibashi, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

Ishikawa, Y.

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

Ito, H.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

Jacob-Mitos, M.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Jin, G.

J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).

Jones, R.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Jongthammanurak, S.

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

Journet, F.

J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).

Juodawlkis, P. W.

Kimerling, L. C.

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

Klamkin, J.

Kobayashi, M.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett.12(10), 378–380 (2002).
[CrossRef]

Koch, B. R.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Kodama, S.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

Lewen, R.

R. Lewen, S. Irmscher, and U. Eriksson, “Microwave CAD circuit modeling of a traveling-wave electroabsorption modulator,” IEEE Trans. Microw. Theory Tech.51(4), 1117–1128 (2003).
[CrossRef]

Li, Z.

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011).
[CrossRef] [PubMed]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron.47(10), 1312–1319 (2011).
[CrossRef]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

Liang, D.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Liao, L.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Liu, J.

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

Madison, S. M.

Michel, J.

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

Missaggia, L. J.

Miyamoto, Y.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

Morse, M. M.

Nagatsuma, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

Napoleone, A.

Nunoya, N.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power Silicon-Germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech.58(11), 3336–3343 (2010).
[CrossRef]

O’Donnell, F. J.

Oakley, D. C.

Pan, H.

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011).
[CrossRef] [PubMed]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron.47(10), 1312–1319 (2011).
[CrossRef]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol.26(15), 2373–2378 (2008).
[CrossRef]

Paniccia, M. J.

Park, H.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Piels, M.

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011).
[CrossRef] [PubMed]

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power Silicon-Germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech.58(11), 3336–3343 (2010).
[CrossRef]

Plant, J. J.

Rabii, O.

J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).

Ramaswamy, A.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power Silicon-Germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech.58(11), 3336–3343 (2010).
[CrossRef]

Rubin, D.

Sarid, G.

Sato, K.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett.12(10), 378–380 (2002).
[CrossRef]

Seeds, A. J.

Sheehan, M.

Shimizu, N.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

Sysak, M. N.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Tang, Y.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Tokumitsu, T.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett.12(10), 378–380 (2002).
[CrossRef]

Vilcot, J. P.

J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).

Wada, K.

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

Wang, G.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett.12(10), 378–380 (2002).
[CrossRef]

Williams, K. J.

Wong, K.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

Yin, T.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power Silicon-Germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech.58(11), 3336–3343 (2010).
[CrossRef]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron.47(10), 1312–1319 (2011).
[CrossRef]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).

IEEE Microw. Wirel. Compon. Lett.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett.12(10), 378–380 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

R. Lewen, S. Irmscher, and U. Eriksson, “Microwave CAD circuit modeling of a traveling-wave electroabsorption modulator,” IEEE Trans. Microw. Theory Tech.51(4), 1117–1128 (2003).
[CrossRef]

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power Silicon-Germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech.58(11), 3336–3343 (2010).
[CrossRef]

J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).

IEICE Trans. Electron.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).

J. Lightwave Technol.

M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol.8(8), 1137–1144 (1990).
[CrossRef]

K. J. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol.17(8), 1443–1454 (1999).
[CrossRef]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
[CrossRef]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol.26(15), 2373–2378 (2008).
[CrossRef]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 1484–1496 (1996).

Opt. Express

Phys. Rev. B

J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004).
[CrossRef]

Other

S. A. Malyshev, A. L. Chizh, and Y. G. Vasileuski, “Mixed device/circuit model of the high-speed p-i-n photodiode,”in Proceedings of the 5th International Conference on Numerical Simulation of Optoelectronic Devices(Institute of Electrical and Electronic Engineers, New York, 2005), pp. 45–46.
[CrossRef]

M. Piels, A. Ramaswamy, J. E. Bowers, T. Yin, D. Kendig, and A. Shakouri, “Three-dimensional thermal analysis of a waveguide Ge/Si photodiode,” in Conference on Integrated Photonics Research and Silicon Nanophotonics, (Optical Society of America, 2010), paper ITuA5.
[CrossRef]

A. Beling, Y. Fu, Z. Li, H. Pan, Q. Zhou, A. Cross, M. Piels, J. Peters, J. E. Bowers, and J. C. Campbell, “Modified uni-traveling carrier photodiodes heterogeneously integrated on Silicon-on-insulator (SOI),” in Conference on Integrated Photonics Research and Silicon Nanophotonics, (Optical Society of America, 2012), paper IM2A.2.
[CrossRef]

K. Giboney, J. E. Bowers, and M. J. Rodwell, “Travelling-wave photodetectors,” in IEEE MTT-S Microwave Symposium Digest(Institute of Electrical and Electronic Engineers, New York, 1995), pp. 159–162.

S. Maas, Nonlinear Microwave and RF Circuits (Artech House, 1997).

S. Adachi, Handbook on Physical Properties of Semiconductors vol. 1 (Springer-Verlag, 2004), Chap. 3.

U. K. Mishra and J. S. Singh, Semiconductor Device Physics and Design (Springer 2008).

M. Piels, “Si/Ge photodiodes for coherent and analog communication,” Ph.D. Dissertation, Dept. Elect. and Comp. Eng., Univ. California, Santa Barbara, 2013.

A. Beling, A. S. Cross, M. Piels, J. Peters, Y. Fu, Q. Zhou, J. E. Bowers, and J. C. Campbell, “High-power high-speed waveguide photodiodes and photodiode arrays heterogeneously integrated on Silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OM2J.1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Equivalent circuit model of a photodiode cross-section.

Fig. 2
Fig. 2

Cascaded photodiode unit cells.

Fig. 3
Fig. 3

Measured and simulated (a) RF output power and (b) compression vs. photocurrent. The RF output power was generated and measured using the same Mach-Zehnder modulator based setup as in [9] and for pol. 2.

Fig. 4
Fig. 4

Measured and simulated −1 dB (a) compression current and (b) output power. Pol. 1: Γα = 260 cm−1. Pol 2: Γα = 260 cm−1.

Fig. 5
Fig. 5

Maximum output power at 1 GHz and 7 V bias as a function of photodetector (a) length and (b) width. Blue: Γα = 175 cm−1. Green: Γα = 260 cm−1. Black: data. Polarization was not controlled during these experiments. The simulation frequency is 1 GHz for all cases, but the test frequency was 13 GHz for the 50 and 100 μm long devices and 3 GHz for the 250 μm long device. The length of all three devices in 5(b) is 100 μm, and the test frequency was 13 GHz.

Fig. 6
Fig. 6

Simulated maximum output power at 1 GHz as a function of (a) thermal impedance (at 7 V bias) and (b) intrinsic region width at the breakdown voltage (green) and 3 V bias (blue).

Fig. 7
Fig. 7

(a) Maximum output power at 1GHz as a function of characteristic absorption length; (b) optimum characteristic absorption length as a function of design frequency for three different levels of available microwave power.

Fig. 8
Fig. 8

(a) Simulated and measured OIP3 for surface-normal and waveguide devices. (b) Simulated OIP3 and quantum efficiency as a function of confinement factor.

Fig. 9
Fig. 9

Simulated (a) absorption coefficients and (b) normalized photocurrent in the direction of propagation. The blue curves correspond to uniform Γα product, the yellow curves to linearly increasing Γα product, and the green curves to nearly uniform photocurrent density.

Tables (2)

Tables Icon

Table 1 Simulation parameters for the output power simulationa

Tables Icon

Table 2 Fitted simulation parameters for the OIP3 simulationa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g m2 = g m2.linear tanh( k J max J linear )
J max = 6 v eff ε i W i 2 ( V bias V pd V th )
g m1 ( T )= g m1 ( T 0 ) 1exp{ Γα( T )l } 1exp{ Γ α 0 l } .
g m1 ( T )= g m1 ( T 0 ) 1exp{ Γ α 0 l 1 d E g dT Z t P d E ph E g, T 0 } 1exp{ Γ α 0 l } .
R in ( T )= Z 0 exp{ Γ α 0 2 l( 1 d E g dT Z t P d E ph E g, T 0 ) } 1exp{ Γ α 0 2 l( 1 d E g dT Z t P d E ph E g, T 0 ) } .

Metrics