Abstract

We study localized surface waves at the interface between linear dielectric and biased centrosymmetric photorefractive (CP) crystals. If the propagation constant b is fixed, the energy of localized surface waves increases with the order of localized surface waves. For low b values, the considerable part of the energy of localized surface waves is concentrated in the linear dielectric and decreases with an increase in b. For high b values, the part of the energy of localized surface waves concentrated in the nonlinear CP crystals is always higher than that in the linear dielectric and increases with b. The stability properties of these localized surface waves are also discussed in detail.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett.73(24), 3211–3214 (1994).
    [CrossRef] [PubMed]
  2. D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B12(9), 1628–1633 (1995).
    [CrossRef]
  3. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B14(7), 1772–1781 (1997).
    [CrossRef]
  4. H. Wang and W. She, “Incoherently coupled grey photovoltaic spatial soliton families,” Chin. Phys. Lett.22(1), 128–131 (2005).
    [CrossRef]
  5. K. Lu, T. Tang, and Y. Zhang, “One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field,” Phys. Rev. A61(5), 053822 (2000).
    [CrossRef]
  6. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
    [CrossRef]
  7. M. Segev and A. J. Agranat, “Spatial solitons in centrosymmetric photorefractive media,” Opt. Lett.22(17), 1299–1301 (1997).
    [CrossRef]
  8. K. Zhan, C. Hou, and S. Pu, “Temporal behavior of spatial solitons in centrosymmetric photorefractive crystals,” Optics & Laser Technology43(7), 1274–1278 (2011).
    [CrossRef]
  9. E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Pefaeli, and A. J. Agranat, “One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate,” Opt. Lett.23(6), 421–423 (1998).
    [CrossRef]
  10. A. Ciattoni, A. Marini, C. Rizza, and E. DelRe, “Collision and fusion of counterpropagating micrometer-sized optical beams in periodically biased photorefractive crystals,” Opt. Lett.34(7), 911–913 (2009).
    [CrossRef] [PubMed]
  11. Y. V. Kartashov, L. Torner, V. A. Vysloukh, and D. Mihalache, “Multipole vector solitons in nonlocal nonlinear media,” Opt. Lett.31(10), 1483–1485 (2006).
    [CrossRef] [PubMed]
  12. W. Chen, Y. He, and H. Wang, “Surface defect superlattice solitons,” J. Opt. Soc. Am. B24(10), 2584–2588 (2007).
    [CrossRef]
  13. K. G. Makris, J. Hudock, D. N. Christodoulides, G. I. Stegeman, O. Manela, and M. Segev, “Surface lattice solitons,” Opt. Lett.31(18), 2774–2776 (2006).
    [CrossRef] [PubMed]
  14. W. Q. Chen, X. Yang, S. Y. Zhong, Z. Yan, T. H. Zhang, J. G. Tian, and J. J. Xu, “Surface dark screening solitons,” Opt. Lett.36(19), 3801–3803 (2011).
    [CrossRef] [PubMed]
  15. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface lattice solitons in diffusive nonlinear media,” Opt. Lett.33(8), 773–775 (2008).
    [CrossRef] [PubMed]
  16. J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive soliton,” Opt. Lett.35(8), 1254–1256 (2010).
    [CrossRef] [PubMed]
  17. G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express.14(12), 5508–5516 (2006).
    [CrossRef] [PubMed]
  18. T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
    [CrossRef]
  19. G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
    [CrossRef] [PubMed]
  20. M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995).
    [CrossRef] [PubMed]
  21. V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric photorefractive crystal boundary,” Phys. Rev. E64(5), 056610 (2001).
    [CrossRef]
  22. V. A. Aleshkevich, V. A. Vysloukh, and Y. V. Kartashev, “Optical surface waves at the interface between a linear dielectric and a photorefractive crystal,” Quantum Electron.30(10), 905–910 (2000).
    [CrossRef]

2011 (2)

K. Zhan, C. Hou, and S. Pu, “Temporal behavior of spatial solitons in centrosymmetric photorefractive crystals,” Optics & Laser Technology43(7), 1274–1278 (2011).
[CrossRef]

W. Q. Chen, X. Yang, S. Y. Zhong, Z. Yan, T. H. Zhang, J. G. Tian, and J. J. Xu, “Surface dark screening solitons,” Opt. Lett.36(19), 3801–3803 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (1)

2007 (2)

W. Chen, Y. He, and H. Wang, “Surface defect superlattice solitons,” J. Opt. Soc. Am. B24(10), 2584–2588 (2007).
[CrossRef]

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

2006 (3)

2005 (1)

H. Wang and W. She, “Incoherently coupled grey photovoltaic spatial soliton families,” Chin. Phys. Lett.22(1), 128–131 (2005).
[CrossRef]

2004 (1)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

2001 (1)

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric photorefractive crystal boundary,” Phys. Rev. E64(5), 056610 (2001).
[CrossRef]

2000 (2)

V. A. Aleshkevich, V. A. Vysloukh, and Y. V. Kartashev, “Optical surface waves at the interface between a linear dielectric and a photorefractive crystal,” Quantum Electron.30(10), 905–910 (2000).
[CrossRef]

K. Lu, T. Tang, and Y. Zhang, “One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field,” Phys. Rev. A61(5), 053822 (2000).
[CrossRef]

1998 (1)

1997 (2)

1995 (3)

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995).
[CrossRef] [PubMed]

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B12(9), 1628–1633 (1995).
[CrossRef]

1994 (1)

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett.73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

Agranat, A. J.

Aleshkevich, V.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric photorefractive crystal boundary,” Phys. Rev. E64(5), 056610 (2001).
[CrossRef]

Aleshkevich, V. A.

V. A. Aleshkevich, V. A. Vysloukh, and Y. V. Kartashev, “Optical surface waves at the interface between a linear dielectric and a photorefractive crystal,” Quantum Electron.30(10), 905–910 (2000).
[CrossRef]

Bashaw, M. C.

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Carvalho, M. I.

Chauvet, M.

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive soliton,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Chen, W.

Chen, W. Q.

Christodoulides, D. N.

Ciattoni, A.

Cronin-Golomb, M.

Crosignani, B.

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Pefaeli, and A. J. Agranat, “One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate,” Opt. Lett.23(6), 421–423 (1998).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett.73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

DelRe, E.

Devaux, F.

DiPorto, P.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett.73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

Egorov, A.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric photorefractive crystal boundary,” Phys. Rev. E64(5), 056610 (2001).
[CrossRef]

Fazio, E.

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive soliton,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Fejer, M. M.

Feng, L.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Garcia Quirino, G. S.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

He, Y.

Hou, C.

K. Zhan, C. Hou, and S. Pu, “Temporal behavior of spatial solitons in centrosymmetric photorefractive crystals,” Optics & Laser Technology43(7), 1274–1278 (2011).
[CrossRef]

Hu, Z.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Hudock, J.

Iwanow, R.

G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express.14(12), 5508–5516 (2006).
[CrossRef] [PubMed]

Kang, H.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Kartashev, Y. V.

V. A. Aleshkevich, V. A. Vysloukh, and Y. V. Kartashev, “Optical surface waves at the interface between a linear dielectric and a photorefractive crystal,” Quantum Electron.30(10), 905–910 (2000).
[CrossRef]

Kartashov, Y.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric photorefractive crystal boundary,” Phys. Rev. E64(5), 056610 (2001).
[CrossRef]

Kartashov, Y. V.

Lou, C.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Lu, K.

K. Lu, T. Tang, and Y. Zhang, “One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field,” Phys. Rev. A61(5), 053822 (2000).
[CrossRef]

Makris, K. G.

K. G. Makris, J. Hudock, D. N. Christodoulides, G. I. Stegeman, O. Manela, and M. Segev, “Surface lattice solitons,” Opt. Lett.31(18), 2774–2776 (2006).
[CrossRef] [PubMed]

G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express.14(12), 5508–5516 (2006).
[CrossRef] [PubMed]

Manela, O.

Marini, A.

Mihalache, D.

Min, Y.

G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express.14(12), 5508–5516 (2006).
[CrossRef] [PubMed]

Mitchell, M.

Pefaeli, E.

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Pu, S.

K. Zhan, C. Hou, and S. Pu, “Temporal behavior of spatial solitons in centrosymmetric photorefractive crystals,” Optics & Laser Technology43(7), 1274–1278 (2011).
[CrossRef]

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Ren, X.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Rizza, C.

Safioui, J.

Sanchez-Mondragon, J. J.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Schiek, R.

G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express.14(12), 5508–5516 (2006).
[CrossRef] [PubMed]

Segev, M.

Shao, W.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

She, W.

H. Wang and W. She, “Incoherently coupled grey photovoltaic spatial soliton families,” Chin. Phys. Lett.22(1), 128–131 (2005).
[CrossRef]

Siviloglou, G. A.

G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express.14(12), 5508–5516 (2006).
[CrossRef] [PubMed]

Sohler, W.

G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express.14(12), 5508–5516 (2006).
[CrossRef] [PubMed]

Stegeman, G. I.

G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express.14(12), 5508–5516 (2006).
[CrossRef] [PubMed]

K. G. Makris, J. Hudock, D. N. Christodoulides, G. I. Stegeman, O. Manela, and M. Segev, “Surface lattice solitons,” Opt. Lett.31(18), 2774–2776 (2006).
[CrossRef] [PubMed]

Stepanov, S.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Tamburrini, M.

Tang, T.

K. Lu, T. Tang, and Y. Zhang, “One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field,” Phys. Rev. A61(5), 053822 (2000).
[CrossRef]

Taya, M.

Tian, J. G.

Torner, L.

Valley, G. C.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B14(7), 1772–1781 (1997).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett.73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Vysloukh, V.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric photorefractive crystal boundary,” Phys. Rev. E64(5), 056610 (2001).
[CrossRef]

Vysloukh, V. A.

Wang, B.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Wang, H.

W. Chen, Y. He, and H. Wang, “Surface defect superlattice solitons,” J. Opt. Soc. Am. B24(10), 2584–2588 (2007).
[CrossRef]

H. Wang and W. She, “Incoherently coupled grey photovoltaic spatial soliton families,” Chin. Phys. Lett.22(1), 128–131 (2005).
[CrossRef]

Xu, J.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Xu, J. J.

Xu, Y.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Yan, Z.

Yang, D.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Yang, J.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Yang, X.

Yariv, A.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett.73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

Zhan, K.

K. Zhan, C. Hou, and S. Pu, “Temporal behavior of spatial solitons in centrosymmetric photorefractive crystals,” Optics & Laser Technology43(7), 1274–1278 (2011).
[CrossRef]

Zhang, T.

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

Zhang, T. H.

Zhang, Y.

K. Lu, T. Tang, and Y. Zhang, “One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field,” Phys. Rev. A61(5), 053822 (2000).
[CrossRef]

Zhong, S. Y.

Appl. Phys. Lett. (1)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004).
[CrossRef]

Chin. Phys. Lett. (1)

H. Wang and W. She, “Incoherently coupled grey photovoltaic spatial soliton families,” Chin. Phys. Lett.22(1), 128–131 (2005).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express. (1)

G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express.14(12), 5508–5516 (2006).
[CrossRef] [PubMed]

Opt. Lett. (9)

M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995).
[CrossRef] [PubMed]

K. G. Makris, J. Hudock, D. N. Christodoulides, G. I. Stegeman, O. Manela, and M. Segev, “Surface lattice solitons,” Opt. Lett.31(18), 2774–2776 (2006).
[CrossRef] [PubMed]

W. Q. Chen, X. Yang, S. Y. Zhong, Z. Yan, T. H. Zhang, J. G. Tian, and J. J. Xu, “Surface dark screening solitons,” Opt. Lett.36(19), 3801–3803 (2011).
[CrossRef] [PubMed]

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface lattice solitons in diffusive nonlinear media,” Opt. Lett.33(8), 773–775 (2008).
[CrossRef] [PubMed]

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive soliton,” Opt. Lett.35(8), 1254–1256 (2010).
[CrossRef] [PubMed]

M. Segev and A. J. Agranat, “Spatial solitons in centrosymmetric photorefractive media,” Opt. Lett.22(17), 1299–1301 (1997).
[CrossRef]

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Pefaeli, and A. J. Agranat, “One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate,” Opt. Lett.23(6), 421–423 (1998).
[CrossRef]

A. Ciattoni, A. Marini, C. Rizza, and E. DelRe, “Collision and fusion of counterpropagating micrometer-sized optical beams in periodically biased photorefractive crystals,” Opt. Lett.34(7), 911–913 (2009).
[CrossRef] [PubMed]

Y. V. Kartashov, L. Torner, V. A. Vysloukh, and D. Mihalache, “Multipole vector solitons in nonlocal nonlinear media,” Opt. Lett.31(10), 1483–1485 (2006).
[CrossRef] [PubMed]

Optics & Laser Technology (1)

K. Zhan, C. Hou, and S. Pu, “Temporal behavior of spatial solitons in centrosymmetric photorefractive crystals,” Optics & Laser Technology43(7), 1274–1278 (2011).
[CrossRef]

Phys. Rev. A (3)

K. Lu, T. Tang, and Y. Zhang, “One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field,” Phys. Rev. A61(5), 053822 (2000).
[CrossRef]

T. Zhang, X. Ren, B. Wang, C. Lou, Z. Hu, W. Shao, Y. Xu, H. Kang, J. Yang, D. Yang, L. Feng, and J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76(1), 013827 (2007).
[CrossRef]

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric photorefractive crystal boundary,” Phys. Rev. E64(5), 056610 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett.73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

Quantum Electron. (1)

V. A. Aleshkevich, V. A. Vysloukh, and Y. V. Kartashev, “Optical surface waves at the interface between a linear dielectric and a photorefractive crystal,” Quantum Electron.30(10), 905–910 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Typical profiles of the potential well for pb = 5 (dashed curve), 0.8 (solid curve), and −2 (dash-dot curve) when β = 3.6.

Fig. 2
Fig. 2

Profiles of the delocalized surface waves for β = 3.6, p = 6, b = 1, μ1 = 0.1, μ2 = 0.00071, and m = 4.5 and 2.

Fig. 3
Fig. 3

Profiles of the shock surface waves of the first three orders for β = 3.6, p = 1, b = 0.2, μ1 = 0.1, and μ2 = 0.00071.

Fig. 4
Fig. 4

(a) Profiles of the localized surface modes of the first three orders for b = 0.03; (b) profiles of the second order localized surface modes for b = 0.01, 0.03, and 0.06. In all cases β = 3.6, μ1 = 0.1, and μ2 = 0.00071.

Fig. 5
Fig. 5

Dependence of the energy of localized surface waves of first three orders on the propagation constant for β = 3.6, p = 1.8, μ1 = 0.1, and μ2 = 0.00071.

Fig. 6
Fig. 6

(a) Profiles of the localized surface modes of the first three orders for b = 1; (b) profiles of the third order localized surface modes for b = 0.06, 0.6, and 1. In all cases β = 3.6, μ1 = 0.1, and μ2 = 0.00071.

Fig. 7
Fig. 7

Stable propagation of the second order localized surface modes for (a) b = 0.01 and (b) b = 0.03 and the third order localized surface modes for (c) b = 0.06 and (d) b = 1 when their amplitudes are perturbed by 20% at the input.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i A z = 1 2 k 0 2 A x 2 for x 0 ,
i A z = 1 2 k 0 2 A x 2 k 2 k 0 2 2 k 0 A k 2 k 0 n Δ n A for x < 0 ,
E s c = E 0 I d I + I d + K B T e x ln ( I + I d ) ,
i A ξ = 1 2 2 A s 2 for s 0 ,
i A ξ = 1 2 2 A s 2 p A + β A ( 1 + I d 1 | A | 2 ) 2 + μ 1 A ( 1 + I d 1 | A | 2 ) 2 ( I d 1 | A | 2 ) s + μ 2 A ( 1 + I d 1 | A | 2 ) 2 [ ( I d 1 | A | 2 ) s ] 2 for s < 0 ,
d 2 u d s 2 = 2 b u for s 0 ,
d 2 u d s 2 = 2 ( b p ) u + 2 β u ( 1 + u 2 ) 2 + 4 μ 1 u 2 ( 1 + u 2 ) 2 d u d s + 8 μ 2 u 3 ( 1 + u 2 ) 2 ( d u d s ) 2 for s < 0 ,
d ( U + T ) d s = 4 μ 1 u 2 ( 1 + u 2 ) 2 ( d u d s ) 2 + 8 μ 2 u 3 ( 1 + u 2 ) 2 ( d u d s ) 3 ,

Metrics