Abstract

We study the effect of transfer of phase noise in different four wave mixing schemes using a coherent phase noise measurement technique. The nature of phase noise transfer from the pump to the generated wavelengths is shown to be independent of the type of phase noise (1 / f or white noise frequency components). We then propose a novel scheme using dual correlated pumps to prevent the increase in phase noise in the conjugate wavelengths. The proposed scheme is experimentally verified by the all-optical wavelength conversion of a DQPSK signal at 10.7 GBaud.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Wu, “High-speed optical signal processing for terabit/second optical networks,” ACP Technical DigestAS2G.4, (2012).
  2. T. Tripathi and K. N. Sivarajan, “Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion,” IEEE J. Se. Area Comm.18,2123–2129 (2000).
    [CrossRef]
  3. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightw. Tecnhol.12,1916–1920 (1994).
    [CrossRef]
  4. T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Topics Quantum Electron.18,988–995 (2012).
    [CrossRef]
  5. B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” OFCOTh1C.5, (2013).
    [CrossRef]
  6. V. J. F. Rancano, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “100GHz grid-aligned reconfigurable polarization insensitive black-box wavelength converter,” OFCJTh2A.19, (2013).
  7. P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery,” IEEE J. Sel. Topics Quantum Electron.18,899–908 (2012).
    [CrossRef]
  8. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. of Lightw. Technol.23,115–130 (2005).
    [CrossRef]
  9. R. Hui and A. Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett.60,2454–2456 (1992).
    [CrossRef]
  10. T. Tanemura, H. C. Lim, and K. Kikuchi, “Suppression of idler spectral broadening in highly efficient fiber four-wave mixing by binary-phase-shift-keying modulation of pump wave,” IEEE Photon. Technol. Lett.13,1328–1330 (2001).
    [CrossRef]
  11. T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett.15,1573–1575 (2003).
    [CrossRef]
  12. M-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightw. Tecnhol.20,469–476 (2002).
    [CrossRef]
  13. K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15,33–35 (2003).
    [CrossRef]
  14. S. Yamashita and K. Torii, “Cancellation of spectral spread in highly-efficient optical fibre wavelength converters,” Electron. Lett.36,1997–1998 (2000).
    [CrossRef]
  15. S. Yamashita and M. Tani, “Cancellation of spectral spread in SBS-suppressed fiber wavelength converters using a single phase modulator,” IEEE Photon. Technol. Lett.16,2096–2098 (2004).
    [CrossRef]
  16. K. Torii and S. Yamashita, “Efficiency improvement of optical fiber wavelength converter without spectral spread using synchronous phase/frequency modulations,” J. Lightwav. Technol.21,1039–1045 (2003).
    [CrossRef]
  17. S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett.18,1064–1066 (2006).
    [CrossRef]
  18. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express20,17610–17619 (2012).
    [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics Ch. 9 (Academic Press, San Diego, 2001).
  20. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw threewave mixing in singlemode optical fibers,” J. App. Phys.49,5098–5106 (1978).
    [CrossRef]
  21. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express20,5291–5302 (2012).
    [CrossRef] [PubMed]
  22. T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett.24,249–251 (2012).
    [CrossRef]
  23. L. P. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightw. Tecnhol.9,485–493 (1991).
    [CrossRef]
  24. G. D. Domenico, S. Schilt, L. Tombez, M. C. Stumpf, and P. Thomann, “A simple approach to evaluate the linewidth of a laser from its frequency spectral density,” Proc. 24th European Frequency and Time Forum, Noordwijk (NL), April 13–15 (2010).
  25. T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High carrier suppression double sideband modulation using an integrated LiNbO3 optical modulator,” International Topical Meeting on Microwave Photonics, MWP, (2005).
  26. F. Favre and L. L. Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett.27,183–184 (1991).
    [CrossRef]
  27. V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
    [CrossRef]
  28. R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwav. Technol.LT-4, 1711–1716 (1986).
    [CrossRef]
  29. J. O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lnndqvist, P. Szabo, and P. J. Rignle, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” OFCTuE2, (2004).
  30. R. T. Watts, R. Rosales, S. Murdoch, F. Lelarge, A. Ramdane, and L. P. Barry, “Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser,” Opt. Lett.37, 1499–1501 (2012).
    [CrossRef] [PubMed]
  31. A. P. Anthur, R. T. Watts, J. O’Carroll, Deepa Venkitesh, and L. P. Barry, “Effect of phase noise on all-optical wavelength conversion of DQPSK data using FWM,” National Communication Conference, India (2013).
  32. J. Zhou, R. Hui, and N. Caponio, “Spectral linewidth and frequency chirp of four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett.6,434–436 (1994).
    [CrossRef]

2013

A. P. Anthur, R. T. Watts, J. O’Carroll, Deepa Venkitesh, and L. P. Barry, “Effect of phase noise on all-optical wavelength conversion of DQPSK data using FWM,” National Communication Conference, India (2013).

2012

K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express20,5291–5302 (2012).
[CrossRef] [PubMed]

R. T. Watts, R. Rosales, S. Murdoch, F. Lelarge, A. Ramdane, and L. P. Barry, “Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser,” Opt. Lett.37, 1499–1501 (2012).
[CrossRef] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express20,17610–17619 (2012).
[CrossRef] [PubMed]

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Topics Quantum Electron.18,988–995 (2012).
[CrossRef]

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery,” IEEE J. Sel. Topics Quantum Electron.18,899–908 (2012).
[CrossRef]

X. Wu, “High-speed optical signal processing for terabit/second optical networks,” ACP Technical DigestAS2G.4, (2012).

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett.24,249–251 (2012).
[CrossRef]

2006

S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett.18,1064–1066 (2006).
[CrossRef]

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

2005

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. of Lightw. Technol.23,115–130 (2005).
[CrossRef]

2004

S. Yamashita and M. Tani, “Cancellation of spectral spread in SBS-suppressed fiber wavelength converters using a single phase modulator,” IEEE Photon. Technol. Lett.16,2096–2098 (2004).
[CrossRef]

2003

K. Torii and S. Yamashita, “Efficiency improvement of optical fiber wavelength converter without spectral spread using synchronous phase/frequency modulations,” J. Lightwav. Technol.21,1039–1045 (2003).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15,33–35 (2003).
[CrossRef]

T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett.15,1573–1575 (2003).
[CrossRef]

2002

M-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightw. Tecnhol.20,469–476 (2002).
[CrossRef]

2001

T. Tanemura, H. C. Lim, and K. Kikuchi, “Suppression of idler spectral broadening in highly efficient fiber four-wave mixing by binary-phase-shift-keying modulation of pump wave,” IEEE Photon. Technol. Lett.13,1328–1330 (2001).
[CrossRef]

2000

S. Yamashita and K. Torii, “Cancellation of spectral spread in highly-efficient optical fibre wavelength converters,” Electron. Lett.36,1997–1998 (2000).
[CrossRef]

T. Tripathi and K. N. Sivarajan, “Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion,” IEEE J. Se. Area Comm.18,2123–2129 (2000).
[CrossRef]

1994

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightw. Tecnhol.12,1916–1920 (1994).
[CrossRef]

J. Zhou, R. Hui, and N. Caponio, “Spectral linewidth and frequency chirp of four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett.6,434–436 (1994).
[CrossRef]

1992

R. Hui and A. Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett.60,2454–2456 (1992).
[CrossRef]

1991

L. P. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightw. Tecnhol.9,485–493 (1991).
[CrossRef]

F. Favre and L. L. Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett.27,183–184 (1991).
[CrossRef]

1986

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwav. Technol.LT-4, 1711–1716 (1986).
[CrossRef]

1978

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw threewave mixing in singlemode optical fibers,” J. App. Phys.49,5098–5106 (1978).
[CrossRef]

Agrawal, G. P.

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery,” IEEE J. Sel. Topics Quantum Electron.18,899–908 (2012).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics Ch. 9 (Academic Press, San Diego, 2001).

Alic, N.

Amiralizadeh, S.

B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” OFCOTh1C.5, (2013).
[CrossRef]

Anthur, A. P.

A. P. Anthur, R. T. Watts, J. O’Carroll, Deepa Venkitesh, and L. P. Barry, “Effect of phase noise on all-optical wavelength conversion of DQPSK data using FWM,” National Communication Conference, India (2013).

Baili, G.

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

Barry, L. P.

A. P. Anthur, R. T. Watts, J. O’Carroll, Deepa Venkitesh, and L. P. Barry, “Effect of phase noise on all-optical wavelength conversion of DQPSK data using FWM,” National Communication Conference, India (2013).

R. T. Watts, R. Rosales, S. Murdoch, F. Lelarge, A. Ramdane, and L. P. Barry, “Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser,” Opt. Lett.37, 1499–1501 (2012).
[CrossRef] [PubMed]

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett.24,249–251 (2012).
[CrossRef]

Baveja, P. P.

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery,” IEEE J. Sel. Topics Quantum Electron.18,899–908 (2012).
[CrossRef]

Bretenaker, F.

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

Caponio, N.

J. Zhou, R. Hui, and N. Caponio, “Spectral linewidth and frequency chirp of four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett.6,434–436 (1994).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwav. Technol.LT-4, 1711–1716 (1986).
[CrossRef]

Crozatier, V.

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

Das, B. K.

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

Domenico, G. D.

G. D. Domenico, S. Schilt, L. Tombez, M. C. Stumpf, and P. Thomann, “A simple approach to evaluate the linewidth of a laser from its frequency spectral density,” Proc. 24th European Frequency and Time Forum, Noordwijk (NL), April 13–15 (2010).

Elschner, R.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Topics Quantum Electron.18,988–995 (2012).
[CrossRef]

Favre, F.

F. Favre and L. L. Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett.27,183–184 (1991).
[CrossRef]

Filion, B.

B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” OFCOTh1C.5, (2013).
[CrossRef]

Gandhe, A.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Topics Quantum Electron.18,988–995 (2012).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. of Lightw. Technol.23,115–130 (2005).
[CrossRef]

Gorju, G.

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

Guen, L. L.

F. Favre and L. L. Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett.27,183–184 (1991).
[CrossRef]

Hammerfeldt, S.

J. O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lnndqvist, P. Szabo, and P. J. Rignle, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” OFCTuE2, (2004).

Hill, K. O.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw threewave mixing in singlemode optical fibers,” J. App. Phys.49,5098–5106 (1978).
[CrossRef]

Ho, M-C.

M-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightw. Tecnhol.20,469–476 (2002).
[CrossRef]

Hui, R.

J. Zhou, R. Hui, and N. Caponio, “Spectral linewidth and frequency chirp of four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett.6,434–436 (1994).
[CrossRef]

R. Hui and A. Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett.60,2454–2456 (1992).
[CrossRef]

Huynh, T. N.

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett.24,249–251 (2012).
[CrossRef]

Inoue, K.

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightw. Tecnhol.12,1916–1920 (1994).
[CrossRef]

Izutsu, M.

T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High carrier suppression double sideband modulation using an integrated LiNbO3 optical modulator,” International Topical Meeting on Microwave Photonics, MWP, (2005).

Johnson, D. C.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw threewave mixing in singlemode optical fibers,” J. App. Phys.49,5098–5106 (1978).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High carrier suppression double sideband modulation using an integrated LiNbO3 optical modulator,” International Topical Meeting on Microwave Photonics, MWP, (2005).

Kawasaki, B. S.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw threewave mixing in singlemode optical fibers,” J. App. Phys.49,5098–5106 (1978).
[CrossRef]

Kazovsky, L. G.

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15,33–35 (2003).
[CrossRef]

M-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightw. Tecnhol.20,469–476 (2002).
[CrossRef]

Kikuchi, K.

K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express20,5291–5302 (2012).
[CrossRef] [PubMed]

T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett.15,1573–1575 (2003).
[CrossRef]

T. Tanemura, H. C. Lim, and K. Kikuchi, “Suppression of idler spectral broadening in highly efficient fiber four-wave mixing by binary-phase-shift-keying modulation of pump wave,” IEEE Photon. Technol. Lett.13,1328–1330 (2001).
[CrossRef]

Kuo, B. P. P.

LaRochelle, S.

B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” OFCOTh1C.5, (2013).
[CrossRef]

Le Gouet, J.-L.

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

Lelarge, F.

Lim, H. C.

T. Tanemura, H. C. Lim, and K. Kikuchi, “Suppression of idler spectral broadening in highly efficient fiber four-wave mixing by binary-phase-shift-keying modulation of pump wave,” IEEE Photon. Technol. Lett.13,1328–1330 (2001).
[CrossRef]

Lnndqvist, L.

J. O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lnndqvist, P. Szabo, and P. J. Rignle, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” OFCTuE2, (2004).

Lorgere, I.

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

MacDonald, R. I.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw threewave mixing in singlemode optical fibers,” J. App. Phys.49,5098–5106 (1978).
[CrossRef]

Marhic, M. E.

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15,33–35 (2003).
[CrossRef]

M-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightw. Tecnhol.20,469–476 (2002).
[CrossRef]

Maywar, D. N.

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery,” IEEE J. Sel. Topics Quantum Electron.18,899–908 (2012).
[CrossRef]

Mecozzi, A.

R. Hui and A. Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett.60,2454–2456 (1992).
[CrossRef]

Mercer, L. P.

L. P. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightw. Tecnhol.9,485–493 (1991).
[CrossRef]

Murdoch, S.

Myslivets, E.

Nguyen, A. T.

B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” OFCOTh1C.5, (2013).
[CrossRef]

Nguyen, L.

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett.24,249–251 (2012).
[CrossRef]

O’Carroll, J.

A. P. Anthur, R. T. Watts, J. O’Carroll, Deepa Venkitesh, and L. P. Barry, “Effect of phase noise on all-optical wavelength conversion of DQPSK data using FWM,” National Communication Conference, India (2013).

Parmigiani, F.

V. J. F. Rancano, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “100GHz grid-aligned reconfigurable polarization insensitive black-box wavelength converter,” OFCJTh2A.19, (2013).

Petermann, K.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Topics Quantum Electron.18,988–995 (2012).
[CrossRef]

Petropoulos, P.

V. J. F. Rancano, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “100GHz grid-aligned reconfigurable polarization insensitive black-box wavelength converter,” OFCJTh2A.19, (2013).

Radic, S.

Ramdane, A.

Rancano, V. J. F.

V. J. F. Rancano, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “100GHz grid-aligned reconfigurable polarization insensitive black-box wavelength converter,” OFCJTh2A.19, (2013).

Richardson, D. J.

V. J. F. Rancano, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “100GHz grid-aligned reconfigurable polarization insensitive black-box wavelength converter,” OFCJTh2A.19, (2013).

Richter, T.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Topics Quantum Electron.18,988–995 (2012).
[CrossRef]

Rignle, P. J.

J. O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lnndqvist, P. Szabo, and P. J. Rignle, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” OFCTuE2, (2004).

Rosales, R.

Rusch, L. A.

B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” OFCOTh1C.5, (2013).
[CrossRef]

Sakamoto, T.

T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High carrier suppression double sideband modulation using an integrated LiNbO3 optical modulator,” International Topical Meeting on Microwave Photonics, MWP, (2005).

Sarlet, G.

J. O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lnndqvist, P. Szabo, and P. J. Rignle, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” OFCTuE2, (2004).

Schilt, S.

G. D. Domenico, S. Schilt, L. Tombez, M. C. Stumpf, and P. Thomann, “A simple approach to evaluate the linewidth of a laser from its frequency spectral density,” Proc. 24th European Frequency and Time Forum, Noordwijk (NL), April 13–15 (2010).

Schubert, C.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Topics Quantum Electron.18,988–995 (2012).
[CrossRef]

Shahed, M.

S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett.18,1064–1066 (2006).
[CrossRef]

Sivarajan, K. N.

T. Tripathi and K. N. Sivarajan, “Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion,” IEEE J. Se. Area Comm.18,2123–2129 (2000).
[CrossRef]

Sohler, W.

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

Stumpf, M. C.

G. D. Domenico, S. Schilt, L. Tombez, M. C. Stumpf, and P. Thomann, “A simple approach to evaluate the linewidth of a laser from its frequency spectral density,” Proc. 24th European Frequency and Time Forum, Noordwijk (NL), April 13–15 (2010).

Szabo, P.

J. O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lnndqvist, P. Szabo, and P. J. Rignle, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” OFCTuE2, (2004).

Tanemura, T.

T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett.15,1573–1575 (2003).
[CrossRef]

T. Tanemura, H. C. Lim, and K. Kikuchi, “Suppression of idler spectral broadening in highly efficient fiber four-wave mixing by binary-phase-shift-keying modulation of pump wave,” IEEE Photon. Technol. Lett.13,1328–1330 (2001).
[CrossRef]

Tani, M.

S. Yamashita and M. Tani, “Cancellation of spectral spread in SBS-suppressed fiber wavelength converters using a single phase modulator,” IEEE Photon. Technol. Lett.16,2096–2098 (2004).
[CrossRef]

Thomann, P.

G. D. Domenico, S. Schilt, L. Tombez, M. C. Stumpf, and P. Thomann, “A simple approach to evaluate the linewidth of a laser from its frequency spectral density,” Proc. 24th European Frequency and Time Forum, Noordwijk (NL), April 13–15 (2010).

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwav. Technol.LT-4, 1711–1716 (1986).
[CrossRef]

Tombez, L.

G. D. Domenico, S. Schilt, L. Tombez, M. C. Stumpf, and P. Thomann, “A simple approach to evaluate the linewidth of a laser from its frequency spectral density,” Proc. 24th European Frequency and Time Forum, Noordwijk (NL), April 13–15 (2010).

Tong, Z.

Torii, K.

K. Torii and S. Yamashita, “Efficiency improvement of optical fiber wavelength converter without spectral spread using synchronous phase/frequency modulations,” J. Lightwav. Technol.21,1039–1045 (2003).
[CrossRef]

S. Yamashita and K. Torii, “Cancellation of spectral spread in highly-efficient optical fibre wavelength converters,” Electron. Lett.36,1997–1998 (2000).
[CrossRef]

Tripathi, T.

T. Tripathi and K. N. Sivarajan, “Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion,” IEEE J. Se. Area Comm.18,2123–2129 (2000).
[CrossRef]

Tsuchiya, M.

T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High carrier suppression double sideband modulation using an integrated LiNbO3 optical modulator,” International Topical Meeting on Microwave Photonics, MWP, (2005).

Venkitesh, Deepa

A. P. Anthur, R. T. Watts, J. O’Carroll, Deepa Venkitesh, and L. P. Barry, “Effect of phase noise on all-optical wavelength conversion of DQPSK data using FWM,” National Communication Conference, India (2013).

Watts, R. T.

A. P. Anthur, R. T. Watts, J. O’Carroll, Deepa Venkitesh, and L. P. Barry, “Effect of phase noise on all-optical wavelength conversion of DQPSK data using FWM,” National Communication Conference, India (2013).

R. T. Watts, R. Rosales, S. Murdoch, F. Lelarge, A. Ramdane, and L. P. Barry, “Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser,” Opt. Lett.37, 1499–1501 (2012).
[CrossRef] [PubMed]

Wesstrom, J. O.

J. O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lnndqvist, P. Szabo, and P. J. Rignle, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” OFCTuE2, (2004).

Wiberg, A. O. J.

Winzer, P. J.

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. of Lightw. Technol.23,115–130 (2005).
[CrossRef]

Wong, K. K. Y.

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15,33–35 (2003).
[CrossRef]

Wong, K. Y. K.

M-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightw. Tecnhol.20,469–476 (2002).
[CrossRef]

Wu, X.

X. Wu, “High-speed optical signal processing for terabit/second optical networks,” ACP Technical DigestAS2G.4, (2012).

Yamashita, S.

S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett.18,1064–1066 (2006).
[CrossRef]

S. Yamashita and M. Tani, “Cancellation of spectral spread in SBS-suppressed fiber wavelength converters using a single phase modulator,” IEEE Photon. Technol. Lett.16,2096–2098 (2004).
[CrossRef]

K. Torii and S. Yamashita, “Efficiency improvement of optical fiber wavelength converter without spectral spread using synchronous phase/frequency modulations,” J. Lightwav. Technol.21,1039–1045 (2003).
[CrossRef]

S. Yamashita and K. Torii, “Cancellation of spectral spread in highly-efficient optical fibre wavelength converters,” Electron. Lett.36,1997–1998 (2000).
[CrossRef]

Zhou, J.

J. Zhou, R. Hui, and N. Caponio, “Spectral linewidth and frequency chirp of four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett.6,434–436 (1994).
[CrossRef]

ACP Technical Digest

X. Wu, “High-speed optical signal processing for terabit/second optical networks,” ACP Technical DigestAS2G.4, (2012).

Appl. Phys. Lett.

R. Hui and A. Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett.60,2454–2456 (1992).
[CrossRef]

Electron. Lett.

S. Yamashita and K. Torii, “Cancellation of spectral spread in highly-efficient optical fibre wavelength converters,” Electron. Lett.36,1997–1998 (2000).
[CrossRef]

F. Favre and L. L. Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett.27,183–184 (1991).
[CrossRef]

IEEE J. Se. Area Comm.

T. Tripathi and K. N. Sivarajan, “Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion,” IEEE J. Se. Area Comm.18,2123–2129 (2000).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Topics Quantum Electron.18,988–995 (2012).
[CrossRef]

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery,” IEEE J. Sel. Topics Quantum Electron.18,899–908 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Yamashita and M. Tani, “Cancellation of spectral spread in SBS-suppressed fiber wavelength converters using a single phase modulator,” IEEE Photon. Technol. Lett.16,2096–2098 (2004).
[CrossRef]

S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett.18,1064–1066 (2006).
[CrossRef]

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett.24,249–251 (2012).
[CrossRef]

T. Tanemura, H. C. Lim, and K. Kikuchi, “Suppression of idler spectral broadening in highly efficient fiber four-wave mixing by binary-phase-shift-keying modulation of pump wave,” IEEE Photon. Technol. Lett.13,1328–1330 (2001).
[CrossRef]

T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett.15,1573–1575 (2003).
[CrossRef]

V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006).
[CrossRef]

J. Zhou, R. Hui, and N. Caponio, “Spectral linewidth and frequency chirp of four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett.6,434–436 (1994).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15,33–35 (2003).
[CrossRef]

J. App. Phys.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw threewave mixing in singlemode optical fibers,” J. App. Phys.49,5098–5106 (1978).
[CrossRef]

J. Lightw. Tecnhol.

M-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightw. Tecnhol.20,469–476 (2002).
[CrossRef]

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightw. Tecnhol.12,1916–1920 (1994).
[CrossRef]

L. P. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightw. Tecnhol.9,485–493 (1991).
[CrossRef]

J. Lightwav. Technol.

K. Torii and S. Yamashita, “Efficiency improvement of optical fiber wavelength converter without spectral spread using synchronous phase/frequency modulations,” J. Lightwav. Technol.21,1039–1045 (2003).
[CrossRef]

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwav. Technol.LT-4, 1711–1716 (1986).
[CrossRef]

J. of Lightw. Technol.

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. of Lightw. Technol.23,115–130 (2005).
[CrossRef]

National Communication Conference, India

A. P. Anthur, R. T. Watts, J. O’Carroll, Deepa Venkitesh, and L. P. Barry, “Effect of phase noise on all-optical wavelength conversion of DQPSK data using FWM,” National Communication Conference, India (2013).

Opt. Express

Opt. Lett.

Other

J. O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lnndqvist, P. Szabo, and P. J. Rignle, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” OFCTuE2, (2004).

G. P. Agrawal, Nonlinear Fiber Optics Ch. 9 (Academic Press, San Diego, 2001).

G. D. Domenico, S. Schilt, L. Tombez, M. C. Stumpf, and P. Thomann, “A simple approach to evaluate the linewidth of a laser from its frequency spectral density,” Proc. 24th European Frequency and Time Forum, Noordwijk (NL), April 13–15 (2010).

T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High carrier suppression double sideband modulation using an integrated LiNbO3 optical modulator,” International Topical Meeting on Microwave Photonics, MWP, (2005).

B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” OFCOTh1C.5, (2013).
[CrossRef]

V. J. F. Rancano, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “100GHz grid-aligned reconfigurable polarization insensitive black-box wavelength converter,” OFCJTh2A.19, (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectral representation of (a) Partially-degenerate scheme, (b) Non-degenerate scheme with the two pumps without correlated phase noise, (c) Non-degenerate scheme with the two pumps having correlated phase noise.

Fig. 2
Fig. 2

Schematic of the experimental setup for linewidth measurement of four-wave mixing components, for different schemes. (Blue dashed) Non-degenerate scheme with correlated pumps.

Fig. 3
Fig. 3

(a) Linewidth measurement results of FWM components for partially-degenerate scheme, where the linewidth of the signal is varied by changing its power, (b) Power spectral density (PSD) of the FM noise of different four-wave mixing components, at low frequency (1 / f noise) region (average signal power of −2 dBm).

Fig. 4
Fig. 4

(a) Linewidth measured for the pumps and signal for a non-degenerate FWM scheme with correlated pumps having linewidth of 8 MHz. The signal linewidth is varied from 350 kHz to 690 kHz, (b) Power spectral density (PSD) of the FM noise of different four-wave mixing components for dual correlated pumping scheme (average signal power of −9.5 dBm).

Fig. 5
Fig. 5

Schematic of the experimental setup to measure BER as a function of received power. The portion of the setup in dashed blue is used for non-degenerate scheme, and correlated pumps. PD - Photodetector, SQA - Signal Quality Analyzer, DCA - Digital Communications Analyzer.

Fig. 6
Fig. 6

Spectra at the input (dotted line) and output (continuous line) of SOA, when correlated pumps are used.

Fig. 7
Fig. 7

BER as a function of received power for DQPSK data format using DFB laser as signal (having linewidth of approximately 700 kHz) and ECSL or MGY laser as pump. MGY laser used for this experiment is operated at a linewidth of 5 MHz (Ch - 40) and 8 MHz (Ch - 38). Eye diagrams at certain BER values are included in the figure.

Fig. 8
Fig. 8

BER as a function of received power in the non-degenerate FWM scheme using dual correlated pumps (each of linewidth 8 MHz) and signal (700 kHz linewidth). Eye diagrams at certain BER values are included in the figure.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Δ ω anti Stokes = 4 Δ ω signal + Δ ω pump ,
Δ ω Stokes = 4 Δ ω pump + Δ ω signal .
Δ ω anti Stokes / Stokes = Δ ω signal + Δ ω pump 1 + Δ ω pump 2 .
Δ ω anti Stokes = Δ ω signal ,
Δ ω Stokes = 4 Δ ω pump 1 / 2 + Δ ω signal .
θ anti Stokes = θ signal + θ pump 2 θ pump 1 ,
θ Stokes = θ pump 1 + θ pump 2 θ signal .
θ pump 2 = θ pump 1 + θ 0 ,
σ Δ θ Stokes 2 = σ Δ θ signal 2 + σ Δ θ pump 2 2 + σ Δ θ pump 1 2 2 Cov ( Δ θ signal , Δ θ pump 1 ) 2 Cov ( Δ θ signal , Δ θ pump 2 ) + 2 Cov ( Δ θ pump 2 , Δ θ pump 1 ) ,
Cov ( Δ θ signal , Δ θ pump 1 ) = Cov ( Δ θ signal , Δ θ pump 2 ) = 0 ,
Cov ( Δ θ pump 2 , Δ θ pump 1 ) = σ Δ θ pump 2 2 = σ Δ θ pump 1 2 .
σ Δ θ Stokes 2 = σ Δ θ signal 2 + 4 σ Δ θ pump 1 / 2 2 .
Δ ω Stokes = 4 Δ ω pump 1 / 2 + Δ ω signal .
σ Δ θ anti Stokes 2 = σ Δ θ signal 2 + σ Δ θ pump 2 2 + σ Δ θ pump 1 2 2 Cov ( Δ θ signal , Δ θ pump 1 ) + 2 Cov ( Δ θ signal , Δ θ pump 2 ) 2 Cov ( Δ θ pump 2 , Δ θ pump 1 ) .
σ Δ θ anti Stokes 2 = σ Δ θ signal 2 .
Δ ω anti Stokes = Δ ω signal .
Δ ω anti Stokes 2 = 4 Δ ω signal 2 + Δ ω pump 2 ,
Δ ω Stokes 2 = 4 Δ ω pump 2 + Δ ω signal 2 .

Metrics