Abstract

The simulation of spectral stabilization of broad-area edge-emitting semiconductor diode lasers is presented in this paper. In the reported model light-, temperature- and charge carrier-distributions are solved iteratively in frequency domain for transverse slices along the semiconductor heterostructure using wide-angle finite-difference beam propagation. Depending on the operating current the laser characteristics are evaluated numerically, including near- and far-field patterns of the astigmatic laser beam, optical output power and the emission spectra, with central wavelength and spectral width. The focus of the model lies on the prediction of influences on the spectrum and power characteristics by frequency selective feedback from external optical resonators. Results for the free running and the spectrally stabilized diode are presented.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bachmann, P. Loosen, and R. Poprawe, eds., High Power Diode Lasers - Technology and Applications (Springer, 2007).
  2. M. Traub, M. Bock, H.-D. Hoffmann, and M. Bartram, “Novel high peak current pulsed diode laser sources for direct material processing,” in Proc. SPIE6456, (2007).
  3. G. Erbert, “Progress in high brilliance lasers,” IEEE Photonics Society Summer Topical Meeting Series (2012).
  4. G. Erbert, A. Bärwolff, J. Sebastian, and J. Tomm, “High-Power Broad-Area Diode Lasers and Laser Bars,” in High-Power Diode Lasers, R. Diehl, ed. (Topics Appl. Phys. 78, 173–223, 2000).
  5. Z. Dai, R. Michalzik, P. Unger, and K. J. Ebeling, “Numerical Simulation of Broad-Area High-Power Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron.33(12), 2240–2254 (1997).
    [CrossRef]
  6. R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral Modes of Broad Area Semiconductor Lasers: Theory and Experiment,” IEEE J. Quantum Electron.27(3), 312–320 (1991).
    [CrossRef]
  7. W. W. Chow and H. Amano, “Analysis of lateral mode behavior in broad-area InGaN quantum well lasers,” IEEE J. Quantum Electron.37(2), 265–273 (2001).
    [CrossRef]
  8. P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
    [CrossRef]
  9. P. Crump, C. M. Schultz, A. Pietrzak, S. Knigge, O. Brox, A. Maaßdorf, F. Bugge, H. Wenzel, and G. Erbert, “975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications,” in Proc. SPIE7583, (2010).
  10. P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012).
    [CrossRef]
  11. J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).
  12. J. R. Marciante and G. P. Agrawal, “Nonlinear Mechanisms of Filamentation in Broad-Area Semiconductor Lasers,” IEEE J. Quantum Electron.32(4), 590–596 (1996).
    [CrossRef]
  13. J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
    [CrossRef]
  14. S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
    [CrossRef]
  15. D. Voelz, Computational Fourier Optics (SPIE Press, 2011).
  16. K. J. Ebeling, Integrated Optoelectronics: Waveguide Optics, Photonics, Semiconductors (Springer, 1993).
  17. J. R. Marciante and G. P. Agrawal, “Controlling Filamentation in Broad-Area Semiconductor Lasers and Amplifiers,” Appl. Phys. Lett.69(5), 593–595 (1996).
    [CrossRef]
  18. S. W. Koch and W. W. Chow, Semiconductor-Laser Fundamentals (Springer, 1999).
  19. J. Buus, “The Effective Index Method and Its Application to Semiconductor Lasers,” IEEE J. Quantum Electron.18(7), 1083–1089 (1982).
    [CrossRef]
  20. K. S. Chan, H. H. Li, and C. Y. Chan, “Optical Gain of Interdiffused InGaAs-GaAs and AlGaAs-GaAs Quantum Wells,” IEEE J. Quantum Electron.34(1), 157–165 (1998).
    [CrossRef]
  21. J. R. Botha and A. W. R. Leitch, “Temperature Dependence of the Photoluminescence Properties and Band Gap Energy of InxGa1–xAs/GaAs Quantum Wells,” J. Electron. Mater.29(12), 1362–1371 (2000).
    [CrossRef]
  22. B. Witzigmann, A. Witzig, and W. Fichtner, “A Multidimensional Laser Simulator for Edge-Emitters Including Quantum Carrier Capture,” IEEE Trans. Electron. Dev.47(10), 1926–1934 (2000).
    [CrossRef]
  23. J. Ohtsubo, Semiconductor Lasers – Stability, Instability and Chaos, 2nd Edition (Springer, 2008).
  24. C. L. Xu and W. P. Huang, “Finite-Difference Beam Propagation Method for Guide-Wave Optics,” Progress In Electromagnetics Research, PIER11, 1–49 (1995).
  25. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (John Wiley & Sons, Inc.,2001).
  26. K. Q. Le and P. Bienstman, “Fast three-dimensional generalized rectangular wide-angle beam propagation method using complex Jacobi iteration,” J. Opt. Soc. Am.26(7), 1469–1472 (2009).
    [CrossRef]
  27. K. Q. Le and P. Bienstman, “Wide-angle beam propagation method without using slowly varying envelope approximation,” J. Opt. Soc. Am.26(2), 353–356 (2009).
    [CrossRef]
  28. K. Q. Le, “Complex Padé approximant operators for wide-angle beam propagation,” Opt. Commun.282(7), 1252–1254 (2009).
    [CrossRef]
  29. W. Nakwaski, “Static thermal properties of broad-contact double- heterostructure laser diodes,” Opt. Quantum Electron.15(6), 513–527 (1983).
    [CrossRef]
  30. J. Mukherjee and J. G. McInerney, “Electrothermal Analysis of CW High-Power Broad-Area Laser Diodes: A Comparison Between 2-D and 3-D Modeling,” IEEE J. Sel. Top. Quantum Electron.13(5), 1180–1187 (2007).
    [CrossRef]
  31. P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010).
    [CrossRef]

2012 (2)

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012).
[CrossRef]

2010 (1)

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010).
[CrossRef]

2009 (4)

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

K. Q. Le and P. Bienstman, “Fast three-dimensional generalized rectangular wide-angle beam propagation method using complex Jacobi iteration,” J. Opt. Soc. Am.26(7), 1469–1472 (2009).
[CrossRef]

K. Q. Le and P. Bienstman, “Wide-angle beam propagation method without using slowly varying envelope approximation,” J. Opt. Soc. Am.26(2), 353–356 (2009).
[CrossRef]

K. Q. Le, “Complex Padé approximant operators for wide-angle beam propagation,” Opt. Commun.282(7), 1252–1254 (2009).
[CrossRef]

2007 (1)

J. Mukherjee and J. G. McInerney, “Electrothermal Analysis of CW High-Power Broad-Area Laser Diodes: A Comparison Between 2-D and 3-D Modeling,” IEEE J. Sel. Top. Quantum Electron.13(5), 1180–1187 (2007).
[CrossRef]

2003 (1)

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

2001 (1)

W. W. Chow and H. Amano, “Analysis of lateral mode behavior in broad-area InGaN quantum well lasers,” IEEE J. Quantum Electron.37(2), 265–273 (2001).
[CrossRef]

2000 (2)

J. R. Botha and A. W. R. Leitch, “Temperature Dependence of the Photoluminescence Properties and Band Gap Energy of InxGa1–xAs/GaAs Quantum Wells,” J. Electron. Mater.29(12), 1362–1371 (2000).
[CrossRef]

B. Witzigmann, A. Witzig, and W. Fichtner, “A Multidimensional Laser Simulator for Edge-Emitters Including Quantum Carrier Capture,” IEEE Trans. Electron. Dev.47(10), 1926–1934 (2000).
[CrossRef]

1998 (1)

K. S. Chan, H. H. Li, and C. Y. Chan, “Optical Gain of Interdiffused InGaAs-GaAs and AlGaAs-GaAs Quantum Wells,” IEEE J. Quantum Electron.34(1), 157–165 (1998).
[CrossRef]

1997 (1)

Z. Dai, R. Michalzik, P. Unger, and K. J. Ebeling, “Numerical Simulation of Broad-Area High-Power Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron.33(12), 2240–2254 (1997).
[CrossRef]

1996 (2)

J. R. Marciante and G. P. Agrawal, “Controlling Filamentation in Broad-Area Semiconductor Lasers and Amplifiers,” Appl. Phys. Lett.69(5), 593–595 (1996).
[CrossRef]

J. R. Marciante and G. P. Agrawal, “Nonlinear Mechanisms of Filamentation in Broad-Area Semiconductor Lasers,” IEEE J. Quantum Electron.32(4), 590–596 (1996).
[CrossRef]

1995 (1)

C. L. Xu and W. P. Huang, “Finite-Difference Beam Propagation Method for Guide-Wave Optics,” Progress In Electromagnetics Research, PIER11, 1–49 (1995).

1991 (1)

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral Modes of Broad Area Semiconductor Lasers: Theory and Experiment,” IEEE J. Quantum Electron.27(3), 312–320 (1991).
[CrossRef]

1983 (1)

W. Nakwaski, “Static thermal properties of broad-contact double- heterostructure laser diodes,” Opt. Quantum Electron.15(6), 513–527 (1983).
[CrossRef]

1982 (1)

J. Buus, “The Effective Index Method and Its Application to Semiconductor Lasers,” IEEE J. Quantum Electron.18(7), 1083–1089 (1982).
[CrossRef]

Agrawal, G. P.

J. R. Marciante and G. P. Agrawal, “Nonlinear Mechanisms of Filamentation in Broad-Area Semiconductor Lasers,” IEEE J. Quantum Electron.32(4), 590–596 (1996).
[CrossRef]

J. R. Marciante and G. P. Agrawal, “Controlling Filamentation in Broad-Area Semiconductor Lasers and Amplifiers,” Appl. Phys. Lett.69(5), 593–595 (1996).
[CrossRef]

Amano, H.

W. W. Chow and H. Amano, “Analysis of lateral mode behavior in broad-area InGaN quantum well lasers,” IEEE J. Quantum Electron.37(2), 265–273 (2001).
[CrossRef]

Benson, T. M.

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

Bienstman, P.

K. Q. Le and P. Bienstman, “Fast three-dimensional generalized rectangular wide-angle beam propagation method using complex Jacobi iteration,” J. Opt. Soc. Am.26(7), 1469–1472 (2009).
[CrossRef]

K. Q. Le and P. Bienstman, “Wide-angle beam propagation method without using slowly varying envelope approximation,” J. Opt. Soc. Am.26(2), 353–356 (2009).
[CrossRef]

Böldicke, S.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

Borruel, L.

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

Botha, J. R.

J. R. Botha and A. W. R. Leitch, “Temperature Dependence of the Photoluminescence Properties and Band Gap Energy of InxGa1–xAs/GaAs Quantum Wells,” J. Electron. Mater.29(12), 1362–1371 (2000).
[CrossRef]

Bream, P.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Bugge, F.

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010).
[CrossRef]

Bull, S.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Buus, J.

J. Buus, “The Effective Index Method and Its Application to Semiconductor Lasers,” IEEE J. Quantum Electron.18(7), 1083–1089 (1982).
[CrossRef]

Chan, C. Y.

K. S. Chan, H. H. Li, and C. Y. Chan, “Optical Gain of Interdiffused InGaAs-GaAs and AlGaAs-GaAs Quantum Wells,” IEEE J. Quantum Electron.34(1), 157–165 (1998).
[CrossRef]

Chan, K. S.

K. S. Chan, H. H. Li, and C. Y. Chan, “Optical Gain of Interdiffused InGaAs-GaAs and AlGaAs-GaAs Quantum Wells,” IEEE J. Quantum Electron.34(1), 157–165 (1998).
[CrossRef]

Chow, W. W.

W. W. Chow and H. Amano, “Analysis of lateral mode behavior in broad-area InGaN quantum well lasers,” IEEE J. Quantum Electron.37(2), 265–273 (2001).
[CrossRef]

Cody, J. G.

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral Modes of Broad Area Semiconductor Lasers: Theory and Experiment,” IEEE J. Quantum Electron.27(3), 312–320 (1991).
[CrossRef]

Crump, P.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010).
[CrossRef]

Dai, Z.

Z. Dai, R. Michalzik, P. Unger, and K. J. Ebeling, “Numerical Simulation of Broad-Area High-Power Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron.33(12), 2240–2254 (1997).
[CrossRef]

Ebeling, K. J.

Z. Dai, R. Michalzik, P. Unger, and K. J. Ebeling, “Numerical Simulation of Broad-Area High-Power Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron.33(12), 2240–2254 (1997).
[CrossRef]

Ekhteraei, H.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

Erbert, G.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010).
[CrossRef]

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

Esquivias, I.

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

Fichtner, W.

B. Witzigmann, A. Witzig, and W. Fichtner, “A Multidimensional Laser Simulator for Edge-Emitters Including Quantum Carrier Capture,” IEEE Trans. Electron. Dev.47(10), 1926–1934 (2000).
[CrossRef]

Georges, P.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Hasler, K.-H.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Hengesbach, S.

P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012).
[CrossRef]

Hoffmann, H.-D.

P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012).
[CrossRef]

Huang, W. P.

C. L. Xu and W. P. Huang, “Finite-Difference Beam Propagation Method for Guide-Wave Optics,” Progress In Electromagnetics Research, PIER11, 1–49 (1995).

Krakowski, M.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

Lang, L.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Lang, R. J.

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral Modes of Broad Area Semiconductor Lasers: Theory and Experiment,” IEEE J. Quantum Electron.27(3), 312–320 (1991).
[CrossRef]

Larkins, E. C.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

Larsson, A. G.

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral Modes of Broad Area Semiconductor Lasers: Theory and Experiment,” IEEE J. Quantum Electron.27(3), 312–320 (1991).
[CrossRef]

Le, K. Q.

K. Q. Le and P. Bienstman, “Fast three-dimensional generalized rectangular wide-angle beam propagation method using complex Jacobi iteration,” J. Opt. Soc. Am.26(7), 1469–1472 (2009).
[CrossRef]

K. Q. Le, “Complex Padé approximant operators for wide-angle beam propagation,” Opt. Commun.282(7), 1252–1254 (2009).
[CrossRef]

K. Q. Le and P. Bienstman, “Wide-angle beam propagation method without using slowly varying envelope approximation,” J. Opt. Soc. Am.26(2), 353–356 (2009).
[CrossRef]

Leitch, A. W. R.

J. R. Botha and A. W. R. Leitch, “Temperature Dependence of the Photoluminescence Properties and Band Gap Energy of InxGa1–xAs/GaAs Quantum Wells,” J. Electron. Mater.29(12), 1362–1371 (2000).
[CrossRef]

Li, H. H.

K. S. Chan, H. H. Li, and C. Y. Chan, “Optical Gain of Interdiffused InGaAs-GaAs and AlGaAs-GaAs Quantum Wells,” IEEE J. Quantum Electron.34(1), 157–165 (1998).
[CrossRef]

Lim, J. J.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Lucas-Leclin, G.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

MacKenzie, R. C. I.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Marciante, J. R.

J. R. Marciante and G. P. Agrawal, “Nonlinear Mechanisms of Filamentation in Broad-Area Semiconductor Lasers,” IEEE J. Quantum Electron.32(4), 590–596 (1996).
[CrossRef]

J. R. Marciante and G. P. Agrawal, “Controlling Filamentation in Broad-Area Semiconductor Lasers and Amplifiers,” Appl. Phys. Lett.69(5), 593–595 (1996).
[CrossRef]

McInerney, J. G.

J. Mukherjee and J. G. McInerney, “Electrothermal Analysis of CW High-Power Broad-Area Laser Diodes: A Comparison Between 2-D and 3-D Modeling,” IEEE J. Sel. Top. Quantum Electron.13(5), 1180–1187 (2007).
[CrossRef]

Michalzik, R.

Z. Dai, R. Michalzik, P. Unger, and K. J. Ebeling, “Numerical Simulation of Broad-Area High-Power Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron.33(12), 2240–2254 (1997).
[CrossRef]

Michel, N.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Moreno, P.

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

Mukherjee, J.

J. Mukherjee and J. G. McInerney, “Electrothermal Analysis of CW High-Power Broad-Area Laser Diodes: A Comparison Between 2-D and 3-D Modeling,” IEEE J. Sel. Top. Quantum Electron.13(5), 1180–1187 (2007).
[CrossRef]

Nakwaski, W.

W. Nakwaski, “Static thermal properties of broad-contact double- heterostructure laser diodes,” Opt. Quantum Electron.15(6), 513–527 (1983).
[CrossRef]

Paboeuf, D.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Pauliat, G.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Petersen, P. M.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Pietrzak, A.

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010).
[CrossRef]

Schultz, C. M.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

Sewell, P.

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

Sujecki, S.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

Sumpf, B.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

Thestrup, B.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Tränkle, G.

P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010).
[CrossRef]

Unger, P.

Z. Dai, R. Michalzik, P. Unger, and K. J. Ebeling, “Numerical Simulation of Broad-Area High-Power Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron.33(12), 2240–2254 (1997).
[CrossRef]

Wenzel, H.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010).
[CrossRef]

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

Witte, U.

P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012).
[CrossRef]

Witzig, A.

B. Witzigmann, A. Witzig, and W. Fichtner, “A Multidimensional Laser Simulator for Edge-Emitters Including Quantum Carrier Capture,” IEEE Trans. Electron. Dev.47(10), 1926–1934 (2000).
[CrossRef]

Witzigmann, B.

B. Witzigmann, A. Witzig, and W. Fichtner, “A Multidimensional Laser Simulator for Edge-Emitters Including Quantum Carrier Capture,” IEEE Trans. Electron. Dev.47(10), 1926–1934 (2000).
[CrossRef]

Wykes, J.

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

Xu, C. L.

C. L. Xu and W. P. Huang, “Finite-Difference Beam Propagation Method for Guide-Wave Optics,” Progress In Electromagnetics Research, PIER11, 1–49 (1995).

Zhang, Z.

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

Appl. Phys. Lett. (2)

J. R. Marciante and G. P. Agrawal, “Controlling Filamentation in Broad-Area Semiconductor Lasers and Amplifiers,” Appl. Phys. Lett.69(5), 593–595 (1996).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010).
[CrossRef]

IEEE J. Quantum Electron. (7)

J. Buus, “The Effective Index Method and Its Application to Semiconductor Lasers,” IEEE J. Quantum Electron.18(7), 1083–1089 (1982).
[CrossRef]

K. S. Chan, H. H. Li, and C. Y. Chan, “Optical Gain of Interdiffused InGaAs-GaAs and AlGaAs-GaAs Quantum Wells,” IEEE J. Quantum Electron.34(1), 157–165 (1998).
[CrossRef]

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).

J. R. Marciante and G. P. Agrawal, “Nonlinear Mechanisms of Filamentation in Broad-Area Semiconductor Lasers,” IEEE J. Quantum Electron.32(4), 590–596 (1996).
[CrossRef]

Z. Dai, R. Michalzik, P. Unger, and K. J. Ebeling, “Numerical Simulation of Broad-Area High-Power Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron.33(12), 2240–2254 (1997).
[CrossRef]

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral Modes of Broad Area Semiconductor Lasers: Theory and Experiment,” IEEE J. Quantum Electron.27(3), 312–320 (1991).
[CrossRef]

W. W. Chow and H. Amano, “Analysis of lateral mode behavior in broad-area InGaN quantum well lasers,” IEEE J. Quantum Electron.37(2), 265–273 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003).
[CrossRef]

J. Mukherjee and J. G. McInerney, “Electrothermal Analysis of CW High-Power Broad-Area Laser Diodes: A Comparison Between 2-D and 3-D Modeling,” IEEE J. Sel. Top. Quantum Electron.13(5), 1180–1187 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

B. Witzigmann, A. Witzig, and W. Fichtner, “A Multidimensional Laser Simulator for Edge-Emitters Including Quantum Carrier Capture,” IEEE Trans. Electron. Dev.47(10), 1926–1934 (2000).
[CrossRef]

J. Electron. Mater. (1)

J. R. Botha and A. W. R. Leitch, “Temperature Dependence of the Photoluminescence Properties and Band Gap Energy of InxGa1–xAs/GaAs Quantum Wells,” J. Electron. Mater.29(12), 1362–1371 (2000).
[CrossRef]

J. Opt. Soc. Am. (2)

K. Q. Le and P. Bienstman, “Fast three-dimensional generalized rectangular wide-angle beam propagation method using complex Jacobi iteration,” J. Opt. Soc. Am.26(7), 1469–1472 (2009).
[CrossRef]

K. Q. Le and P. Bienstman, “Wide-angle beam propagation method without using slowly varying envelope approximation,” J. Opt. Soc. Am.26(2), 353–356 (2009).
[CrossRef]

Opt. Commun. (1)

K. Q. Le, “Complex Padé approximant operators for wide-angle beam propagation,” Opt. Commun.282(7), 1252–1254 (2009).
[CrossRef]

Opt. Quantum Electron. (1)

W. Nakwaski, “Static thermal properties of broad-contact double- heterostructure laser diodes,” Opt. Quantum Electron.15(6), 513–527 (1983).
[CrossRef]

Progress In Electromagnetics Research, PIER (1)

C. L. Xu and W. P. Huang, “Finite-Difference Beam Propagation Method for Guide-Wave Optics,” Progress In Electromagnetics Research, PIER11, 1–49 (1995).

Semicond. Sci. Technol. (1)

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

Other (11)

P. Crump, C. M. Schultz, A. Pietrzak, S. Knigge, O. Brox, A. Maaßdorf, F. Bugge, H. Wenzel, and G. Erbert, “975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications,” in Proc. SPIE7583, (2010).

F. Bachmann, P. Loosen, and R. Poprawe, eds., High Power Diode Lasers - Technology and Applications (Springer, 2007).

M. Traub, M. Bock, H.-D. Hoffmann, and M. Bartram, “Novel high peak current pulsed diode laser sources for direct material processing,” in Proc. SPIE6456, (2007).

G. Erbert, “Progress in high brilliance lasers,” IEEE Photonics Society Summer Topical Meeting Series (2012).

G. Erbert, A. Bärwolff, J. Sebastian, and J. Tomm, “High-Power Broad-Area Diode Lasers and Laser Bars,” in High-Power Diode Lasers, R. Diehl, ed. (Topics Appl. Phys. 78, 173–223, 2000).

S. W. Koch and W. W. Chow, Semiconductor-Laser Fundamentals (Springer, 1999).

D. Voelz, Computational Fourier Optics (SPIE Press, 2011).

K. J. Ebeling, Integrated Optoelectronics: Waveguide Optics, Photonics, Semiconductors (Springer, 1993).

J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002).
[CrossRef]

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (John Wiley & Sons, Inc.,2001).

J. Ohtsubo, Semiconductor Lasers – Stability, Instability and Chaos, 2nd Edition (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Principle of BA-LD epitaxial grow, band gap energy profile, refractive index profile, vertical mode intensity, lateral mode intensity, carrier density, lateral and vertical far-field profiles and axis (lateral, vertical, longitudinal) definition.

Fig. 2
Fig. 2

Flow-diagram illustrating the relevant physical properties, solvers and their interaction.

Fig. 3
Fig. 3

Schematic representation of the coupling of domains.

Fig. 4
Fig. 4

Computed semiconductor properties: amplitude gain (top left), spontaneous emission rate (top right), refractive index change (bottom left, the arrow indicates the direction of increasing carrier density) over wavelength for carrier densities N = 1.5, 2, 2.5, 3, 3.5 1018 cm−3 at T = 293.15, 343.15, 393.15 K. Gain over carrier density for different temperatures (bottom right).

Fig. 5
Fig. 5

Computed transverse intra-cavity temperature profiles. Left: temperature profile over vertical (x) and lateral (y) direction for I = 6 A, right: lateral temperature distributions inside active region (x = 0 µm) for injection currents of I = 1 A to 10 A (the arrow indicates the direction of increasing injection current).

Fig. 6
Fig. 6

Plots of the computed envelope of the electromagnetic intensity and the carrier density for a lateral (y direction), –longitudinal (z direction) slice inside the active region. The intensity of the forward (left) and backward (center) travelling waves and the carrier density (right) are displayed over the lateral (y) and longitudinal (z) direction for a) I = 10 A and b) I = 2 A.

Fig. 7
Fig. 7

Computed transverse profile of the optical intensity in the waveguide (combination of false color and height plot, left). The calculated vertical light intensity is displayed together with the refractive index profile in vertical direction (right). The QWs are positioned at x = 0 µm.

Fig. 8
Fig. 8

Computed optical intensity profiles: Averaged (from round-trip 20 to 100) near-field profiles over lateral direction at the diodes facet (left) and averaged (from round-trip 90 to 100) far-field profiles over lateral angle (right) for several injection currents.

Fig. 9
Fig. 9

Spectral power density and output power over current – simulation and experiment. The computed center of mass wavelength (solid line), 95% power inclusion (dashed line) and the output power (dashed line) are displayed (left). The triangular markers indicate the experimental measurements. Simulated (solid line) and experimental (dotted line, performed with a spectral resolution of 50 pm) spectral power densities (normalized) over wavelength for currents I = 2, 4, 6, 8, 10 A (right). The spectrum and power is determined by averaging over 50 round-trips.

Fig. 10
Fig. 10

Inverse self-imaging external optical system with FAC, SAC and VBG. False color plot of optical intensity with 2nd momentum of intensity for the forward (top) and backward (bottom) propagating field.

Fig. 11
Fig. 11

Calculated (top row) and measured (bottom row with spectral resolution of 50 pm) spectral stabilization with external reflectivity of 6%. Spectral power density (normalized for each injection current) over wavelength for several injection currents (left, top and bottom), and spectral map in false colors (right top and bottom) with 90% power inclusion (dashed line) and central wavelength (dash-dotted line).

Tables (3)

Tables Icon

Table 1 Semiconductor material parameters for In0.15Ga0.85As at T = 300 K

Tables Icon

Table 2 Material parameters of epitaxial layers

Tables Icon

Table 3 Simulation parameters

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

dN dt =D 2 N+ η i J qd B N 2 1 τ nr N Γ c 0 n ac g( ω,N,T )S,
k eff ( ω,N,T )= k 0 ( n eff +Γδn( ω,N,T )+( 1Γ ) n Kerr I )i( Γg( ω,N,T )( 1Γ ) α int ),
χ( ω,N,T )= n ac 2 1 m r | μ 0 | 2 π ε 0 3 γd 0 dε f e ( ε,N,T )+ f h ( ε,N,T )1 ( 1+ ( ε+ ε g ( T )ω γ ) 2 ) ( 1+ ε ε g ( T ) ) 2 ×( i+ ε+ ε g ( T )ω γ ),
ε g ( T )= ε g,0 α InGaAs T 2 T+ β InGaAs ,
g( ω,N,T )= ω 2 n ac c 0 ( χ ).
sr( ω,N,T )= B d ( π 2 m r 2q k B T m e m h ) 3/2 0 dε f e ( ε,N,T ) f h ( ε,N,T ) 1+ ( ε+ ε g ω γ ) 2 ,
δn( ω,N,T )= 1 2 n ac ( ( χ )+1 n ac 2 ).
E T ( x,t )= p=1 N ω ψ T p ( x ) e -i ω p t = p=1 N ω ϕ p ( x,y,z ) e ±i ω p c 0 ( n ref x x+ n ref y y+ n ref z z ) e -i ω p t ,
z 2 ψ T p + T 2 ψ T p + k p 2 ψ T p = T ( T ψ T p 1 n 2 T ( n 2 ψ T p ) ),
p=1 N ω z 2 ϕ p +2i ω p c 0 n ref z z ϕ p + G p ϕ p =0 .
( 1i n ref ω p Δz 2 c 0 ( 1+ c 0 2 G p ( n ref ω p ) 2 1 ) ) A p ϕ p | k+1 = ( 1+i n ref ω p Δz 2 c 0 ( 1+ c 0 2 G p ( n ref ω p ) 2 1 ) ) B p ϕ p | k ,
ϕ ' p | k+1 = ϕ p | k+1 + 2 ω p Δz β ¯ sr( ω p ,N,T ) ε 0 c 0 n ref
( λ T ( x )T( x ) )+g( x )=0.

Metrics