Abstract

We report on the fabrication of stress-induced optical channel waveguides and waveguide splitters with laser-depressed cladding by femtosecond laser. The laser beam was focused into neodymium doped phosphate glass by an objective producing a destructive filament. By moving the sample along an enclosed routine in the horizontal plane followed by a minor descent less than the filament length in the vertical direction, a cylinder with rarified periphery and densified center region was fabricated. Lining up the segments in partially overlapping sequence enabled waveguiding therein. The refractive-index contrast, near- and far-field mode distribution and confocal microscope fluorescence image of the waveguide were obtained. 1-to-2, 1-to-3 and 1-to-4 splitters were also machined with adjustable splitting ratio. Compared with traditional femtosecond laser writing methods, waveguides prepared by this approach showed controllable mode conduction, strong field confinement, large numerical aperture, low propagation loss and intact core region.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
    [CrossRef]
  3. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
  4. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
  5. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
    [CrossRef]
  6. L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
  7. H. L. Liu, Y. C. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
    [CrossRef] [PubMed]
  8. J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
    [CrossRef] [PubMed]
  9. J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. Adv. Mater.86, 165–170 (2007).
  10. J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253(19), 7899–7902 (2007).
    [CrossRef]
  11. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express20(22), 24103–24114 (2012).
    [CrossRef] [PubMed]
  12. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
    [CrossRef] [PubMed]
  13. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28(1), 55–57 (2003).
    [CrossRef] [PubMed]
  14. J. R. Liu, Z. Y. Zhang, C. Flueraru, X. P. Liu, S. D. Chang, and C. P. Grover, “Waveguide shaping and writing in fused silica using a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.10(1), 169–173 (2004).
    [CrossRef]
  15. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids263, 318–341 (2000).
    [CrossRef]
  16. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
    [CrossRef] [PubMed]
  17. N31 Nd-doped phosphate glass,” (2003), http://www.siom.cas.cn/qtwzlm/200303/t20030321_1823647.html .
  18. W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
    [CrossRef]
  19. R. Regener and W. Sohler, “Loss in Low-Finesse Ti-LiNbO3 Optical Wave-Guide Resonators,” Appl. Phys. B.36, 143–147 (1985).
  20. M. H. Hong, B. Luk'yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. Adv. Mater.79, 791–794 (2004).
  21. G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
    [CrossRef] [PubMed]
  22. J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc.85(5), 1037–1040 (2002).
    [CrossRef]

2012 (4)

2011 (1)

2010 (1)

2009 (1)

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).

2008 (1)

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

2007 (3)

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. Adv. Mater.86, 165–170 (2007).

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253(19), 7899–7902 (2007).
[CrossRef]

2005 (1)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

2004 (2)

J. R. Liu, Z. Y. Zhang, C. Flueraru, X. P. Liu, S. D. Chang, and C. P. Grover, “Waveguide shaping and writing in fused silica using a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.10(1), 169–173 (2004).
[CrossRef]

M. H. Hong, B. Luk'yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. Adv. Mater.79, 791–794 (2004).

2003 (2)

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28(1), 55–57 (2003).
[CrossRef] [PubMed]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

2002 (1)

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc.85(5), 1037–1040 (2002).
[CrossRef]

2000 (2)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids263, 318–341 (2000).
[CrossRef]

1996 (1)

1985 (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti-LiNbO3 Optical Wave-Guide Resonators,” Appl. Phys. B.36, 143–147 (1985).

Aitchison, J. S.

Arai, A.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).

Bado, P.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Bellec, M.

Bookey, H. T.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Bourhis, K.

Bovatsek, J.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).

Brow, R. K.

Brown, G.

Burghoff, J.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253(19), 7899–7902 (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. Adv. Mater.86, 165–170 (2007).

Campbell, J. H.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids263, 318–341 (2000).
[CrossRef]

Canioni, L.

Cardinal, T.

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc.85(5), 1037–1040 (2002).
[CrossRef]

Chang, S. D.

J. R. Liu, Z. Y. Zhang, C. Flueraru, X. P. Liu, S. D. Chang, and C. P. Grover, “Waveguide shaping and writing in fused silica using a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.10(1), 169–173 (2004).
[CrossRef]

Chen, F.

Cheng, Y.

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Choi, J.

Chong, T. C.

M. H. Hong, B. Luk'yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. Adv. Mater.79, 791–794 (2004).

Couairon, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

Davis, K. M.

Fernandes, L. A.

Fletcher, L. B.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).

Florea, C.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Flueraru, C.

J. R. Liu, Z. Y. Zhang, C. Flueraru, X. P. Liu, S. D. Chang, and C. P. Grover, “Waveguide shaping and writing in fused silica using a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.10(1), 169–173 (2004).
[CrossRef]

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253(19), 7899–7902 (2007).
[CrossRef]

Grenier, J. R.

Grover, C. P.

J. R. Liu, Z. Y. Zhang, C. Flueraru, X. P. Liu, S. D. Chang, and C. P. Grover, “Waveguide shaping and writing in fused silica using a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.10(1), 169–173 (2004).
[CrossRef]

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. Adv. Mater.86, 165–170 (2007).

Hayden, J. S.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc.85(5), 1037–1040 (2002).
[CrossRef]

Herman, P. R.

Hirao, K.

Hong, M. H.

M. H. Hong, B. Luk'yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. Adv. Mater.79, 791–794 (2004).

Huang, S. M.

M. H. Hong, B. Luk'yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. Adv. Mater.79, 791–794 (2004).

Huser, T.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc.85(5), 1037–1040 (2002).
[CrossRef]

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

Jaque, D.

Jia, Y. C.

Kar, A. K.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Kawachi, M.

Kazansky, P. G.

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

Krol, D. M.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc.85(5), 1037–1040 (2002).
[CrossRef]

Liu, H. L.

Liu, J. R.

J. R. Liu, Z. Y. Zhang, C. Flueraru, X. P. Liu, S. D. Chang, and C. P. Grover, “Waveguide shaping and writing in fused silica using a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.10(1), 169–173 (2004).
[CrossRef]

Liu, X. P.

J. R. Liu, Z. Y. Zhang, C. Flueraru, X. P. Liu, S. D. Chang, and C. P. Grover, “Waveguide shaping and writing in fused silica using a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.10(1), 169–173 (2004).
[CrossRef]

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Luk'yanchuk, B.

M. H. Hong, B. Luk'yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. Adv. Mater.79, 791–794 (2004).

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Marques, P. V. S.

Masuda, M.

Maynard, R.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Midorikawa, K.

Miura, K.

Mysyrowicz, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

Nolte, S.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253(19), 7899–7902 (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. Adv. Mater.86, 165–170 (2007).

Ong, T. S.

M. H. Hong, B. Luk'yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. Adv. Mater.79, 791–794 (2004).

Osellame, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Papon, G.

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

Psaila, N. D.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Regener, R.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti-LiNbO3 Optical Wave-Guide Resonators,” Appl. Phys. B.36, 143–147 (1985).

Reichman, W. B.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).

Reis, S. T.

Richardson, M.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc.85(5), 1037–1040 (2002).
[CrossRef]

Royon, A.

Said, A. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Sakakura, M.

Sawano, T.

Shihoyama, K.

Shimotsuma, Y.

Sikorski, Y.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti-LiNbO3 Optical Wave-Guide Resonators,” Appl. Phys. B.36, 143–147 (1985).

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

Sugimoto, N.

Sugioka, K.

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids263, 318–341 (2000).
[CrossRef]

Svirko, Y. P.

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

Thomson, R. R.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

Toyoda, K.

Troy, N.

Tunnermann, A.

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. Adv. Mater.86, 165–170 (2007).

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253(19), 7899–7902 (2007).
[CrossRef]

Van, L. H.

M. H. Hong, B. Luk'yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. Adv. Mater.79, 791–794 (2004).

Vázquez de Aldana, J. R.

Winick, K. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Witcher, J. J.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).

Yang, W. J.

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

Zhang, Z. Y.

J. R. Liu, Z. Y. Zhang, C. Flueraru, X. P. Liu, S. D. Chang, and C. P. Grover, “Waveguide shaping and writing in fused silica using a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.10(1), 169–173 (2004).
[CrossRef]

Appl. Phys. Adv. Mater. (2)

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. Adv. Mater.86, 165–170 (2007).

M. H. Hong, B. Luk'yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. Adv. Mater.79, 791–794 (2004).

Appl. Phys. B. (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti-LiNbO3 Optical Wave-Guide Resonators,” Appl. Phys. B.36, 143–147 (1985).

Appl. Phys. Lett. (1)

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

Appl. Surf. Sci. (1)

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253(19), 7899–7902 (2007).
[CrossRef]

Electron. Lett. (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. R. Liu, Z. Y. Zhang, C. Flueraru, X. P. Liu, S. D. Chang, and C. P. Grover, “Waveguide shaping and writing in fused silica using a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.10(1), 169–173 (2004).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc.85(5), 1037–1040 (2002).
[CrossRef]

J. Non-Cryst. Solids (1)

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids263, 318–341 (2000).
[CrossRef]

Nat. Photonics (1)

W. J. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Other (4)

N31 Nd-doped phosphate glass,” (2003), http://www.siom.cas.cn/qtwzlm/200303/t20030321_1823647.html .

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Resulted waveguides with cross-section in shape of (a) triangle, (b) square, (c) pentagon, (d) hexagon and (e) circle.

Fig. 3
Fig. 3

Measured near-field profile for horizontally and vertically polarized He-Ne laser.

Fig. 4
Fig. 4

Simulated near-field profile of the waveguide assuming step-index cross-section.

Fig. 5
Fig. 5

The end facet of multi-scan waveguide under white light illumination.

Fig. 6
Fig. 6

(a) The micrograph of the rectangular waveguide and (b) its corresponding confocal fluorescence micrograph under 405 nm excitation.

Fig. 7
Fig. 7

Micrograph of a 1-to-2 splitter.

Fig. 8
Fig. 8

Output near-field profile from (a) 1-to-2, (b) 1-to-3 and (c) 1-4 splitters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn= n core n cladding = N A 2 2n .

Metrics