Abstract

Abstract: The acoustic pressure sensitivities of hollow-core photonic bandgap fibers (HC-PBFs) with different thicknesses of silica outer-cladding and polymer jacket were experimentally investigated. Experiment with a HC-PBF with 7 μm-thick silica outer cladding and 100 μm-thick Parylene C jacket demonstrated a pressure sensitivity 10 dB higher than the commercial HC-1550-02 fiber and 25 dB higher than a standard single mode fiber. The significant enhancement in sensitivity would simplify the design of fiber hydrophone arrays and increase the number of sensors that could be multiplexed in a single fiber.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
    [CrossRef]
  2. J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber optic detection of sound,” J. Acoust. Soc. Am.62(5), 1136–1138 (1977).
    [CrossRef]
  3. B. Budiansky, D. C. Drucker, G. S. Kino, and J. R. Rice, “Pressure sensitivity of a clad optical fiber,” Appl. Opt.18(24), 4085–4088 (1979).
    [CrossRef] [PubMed]
  4. R. Hughes and J. Jarzynski, “Static pressure sensitivity amplification in interferometric fiber-optic hydrophones,” Appl. Opt.19(1), 98–107 (1980).
    [CrossRef] [PubMed]
  5. N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, “Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J. Quantum Electron.18(4), 683–689 (1982).
    [CrossRef]
  6. J. A. Bucaro, N. Lagakos, H. H. Cole, and T. G. Giallorenzi, “Fiber optic acoustic transduction,” in Physical Acoustics vol 16, W. P. Mason and R. N. Thurston, eds. (Academic Press Inc, 1982), pp. 385–457.
  7. G. McDearmon, “Theoretical analysis of a push-pull fiber-optic hydrophone,” J. Lightwave Technol.5(5), 647–652 (1987).
    [CrossRef]
  8. C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D37(18), 197–216 (2004).
    [CrossRef]
  9. J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 15th International Conference on Optical Fiber Sensors, (Portland, 2002), pp. 317–320.
    [CrossRef]
  10. J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 16th International Conference on Optical Fiber Sensors, (Nara, 2003), pp. 214–217.
  11. M. Pang and W. Jin, “Detection of acoustic pressure with hollow-core photonic bandgap fiber,” Opt. Express17(13), 11088–11097 (2009).
    [CrossRef] [PubMed]
  12. M. Pang, H. F. Xuan, J. Ju, and W. Jin, “Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers,” Opt. Express18(13), 14041–14055 (2010).
    [CrossRef] [PubMed]
  13. Specialty Coating Systems website, http://scscoatings.com
  14. T. A. Harder, T. J. Yao, Q. He, C. Y. Shih, and Y. C. Tai, “Residual stress in thin-film parylene-C,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Las Vegas, 2002), pp. 435–438.
  15. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett.27(6), 518–520 (1991).
    [CrossRef]
  16. Y. M. Hu, Z. L. Hu, H. Luo, and L. N. Ma, “Recent progress toward fiber optic hydrophone research, application and commercialization in China,” Proc. SPIE 8421, 22nd International Conference on Optical Fiber Sensors, 84210Q (2012).
    [CrossRef]
  17. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. Microw. Theory Tech.30(10), 1635–1641 (1982).
    [CrossRef]
  18. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and PropertiesII (Cambridge University, 1997), Chap. 4.
  19. R. M. Christensen, “Mechanics of cellular and other low-density materials,” Int. J. Solids Struct.37(1-2), 93–104 (2000).
    [CrossRef]
  20. V. Dangui, H. K. Kim, M. Digonnet, and G. Kino, “Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers,” Opt. Express13(18), 6669–6684 (2005).
    [CrossRef] [PubMed]
  21. Shared Materials Instruction Facility in Duke University, https://smif.lab.duke.edu/pdf/UsefulParametersForParyleneDeposition.pdf
  22. Y. Liu and M. B. Huglin, “Effective crosslinking densities and elastic moduli of some physically crosslinked hydrogels,” Polymer (Guildf.)36(8), 1715–1718 (1995).
    [CrossRef]
  23. J. M. Williams, J. J. Bartos, and M. H. Wilkerson, “Elastic modulus dependence on density for polymeric foams with systematically changing microstructures,” J. Mater. Sci.25(12), 5134–5141 (1990).
    [CrossRef]

2010 (1)

2009 (1)

2005 (1)

2004 (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D37(18), 197–216 (2004).
[CrossRef]

2000 (1)

R. M. Christensen, “Mechanics of cellular and other low-density materials,” Int. J. Solids Struct.37(1-2), 93–104 (2000).
[CrossRef]

1995 (1)

Y. Liu and M. B. Huglin, “Effective crosslinking densities and elastic moduli of some physically crosslinked hydrogels,” Polymer (Guildf.)36(8), 1715–1718 (1995).
[CrossRef]

1991 (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett.27(6), 518–520 (1991).
[CrossRef]

1990 (1)

J. M. Williams, J. J. Bartos, and M. H. Wilkerson, “Elastic modulus dependence on density for polymeric foams with systematically changing microstructures,” J. Mater. Sci.25(12), 5134–5141 (1990).
[CrossRef]

1987 (1)

G. McDearmon, “Theoretical analysis of a push-pull fiber-optic hydrophone,” J. Lightwave Technol.5(5), 647–652 (1987).
[CrossRef]

1982 (2)

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, “Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J. Quantum Electron.18(4), 683–689 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. Microw. Theory Tech.30(10), 1635–1641 (1982).
[CrossRef]

1980 (1)

1979 (1)

1977 (2)

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber optic detection of sound,” J. Acoust. Soc. Am.62(5), 1136–1138 (1977).
[CrossRef]

Bartos, J. J.

J. M. Williams, J. J. Bartos, and M. H. Wilkerson, “Elastic modulus dependence on density for polymeric foams with systematically changing microstructures,” J. Mater. Sci.25(12), 5134–5141 (1990).
[CrossRef]

Bhuta, P. G.

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber optic detection of sound,” J. Acoust. Soc. Am.62(5), 1136–1138 (1977).
[CrossRef]

Bucaro, J. A.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, “Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J. Quantum Electron.18(4), 683–689 (1982).
[CrossRef]

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

Budiansky, B.

Carome, E. F.

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

Christensen, R. M.

R. M. Christensen, “Mechanics of cellular and other low-density materials,” Int. J. Solids Struct.37(1-2), 93–104 (2000).
[CrossRef]

Cole, J. H.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, “Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J. Quantum Electron.18(4), 683–689 (1982).
[CrossRef]

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber optic detection of sound,” J. Acoust. Soc. Am.62(5), 1136–1138 (1977).
[CrossRef]

J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 15th International Conference on Optical Fiber Sensors, (Portland, 2002), pp. 317–320.
[CrossRef]

J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 16th International Conference on Optical Fiber Sensors, (Nara, 2003), pp. 214–217.

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D37(18), 197–216 (2004).
[CrossRef]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. Microw. Theory Tech.30(10), 1635–1641 (1982).
[CrossRef]

J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 16th International Conference on Optical Fiber Sensors, (Nara, 2003), pp. 214–217.

J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 15th International Conference on Optical Fiber Sensors, (Portland, 2002), pp. 317–320.
[CrossRef]

Dangui, V.

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett.27(6), 518–520 (1991).
[CrossRef]

Digonnet, M.

Drucker, D. C.

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. Microw. Theory Tech.30(10), 1635–1641 (1982).
[CrossRef]

Harder, T. A.

T. A. Harder, T. J. Yao, Q. He, C. Y. Shih, and Y. C. Tai, “Residual stress in thin-film parylene-C,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Las Vegas, 2002), pp. 435–438.

He, Q.

T. A. Harder, T. J. Yao, Q. He, C. Y. Shih, and Y. C. Tai, “Residual stress in thin-film parylene-C,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Las Vegas, 2002), pp. 435–438.

Hughes, R.

Huglin, M. B.

Y. Liu and M. B. Huglin, “Effective crosslinking densities and elastic moduli of some physically crosslinked hydrogels,” Polymer (Guildf.)36(8), 1715–1718 (1995).
[CrossRef]

Jarzynski, J.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, “Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J. Quantum Electron.18(4), 683–689 (1982).
[CrossRef]

R. Hughes and J. Jarzynski, “Static pressure sensitivity amplification in interferometric fiber-optic hydrophones,” Appl. Opt.19(1), 98–107 (1980).
[CrossRef] [PubMed]

J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 16th International Conference on Optical Fiber Sensors, (Nara, 2003), pp. 214–217.

Jin, W.

Johnson, R. L.

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber optic detection of sound,” J. Acoust. Soc. Am.62(5), 1136–1138 (1977).
[CrossRef]

Ju, J.

Kersey, A. D.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett.27(6), 518–520 (1991).
[CrossRef]

Kim, H. K.

Kino, G.

Kino, G. S.

Kirkendall, C.

J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 15th International Conference on Optical Fiber Sensors, (Portland, 2002), pp. 317–320.
[CrossRef]

J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 16th International Conference on Optical Fiber Sensors, (Nara, 2003), pp. 214–217.

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D37(18), 197–216 (2004).
[CrossRef]

Lagakos, N.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, “Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J. Quantum Electron.18(4), 683–689 (1982).
[CrossRef]

Liu, Y.

Y. Liu and M. B. Huglin, “Effective crosslinking densities and elastic moduli of some physically crosslinked hydrogels,” Polymer (Guildf.)36(8), 1715–1718 (1995).
[CrossRef]

Marrone, M. J.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett.27(6), 518–520 (1991).
[CrossRef]

McDearmon, G.

G. McDearmon, “Theoretical analysis of a push-pull fiber-optic hydrophone,” J. Lightwave Technol.5(5), 647–652 (1987).
[CrossRef]

Mothley, S.

J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 16th International Conference on Optical Fiber Sensors, (Nara, 2003), pp. 214–217.

Pang, M.

Rice, J. R.

Schnaus, E. U.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, “Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J. Quantum Electron.18(4), 683–689 (1982).
[CrossRef]

Shih, C. Y.

T. A. Harder, T. J. Yao, Q. He, C. Y. Shih, and Y. C. Tai, “Residual stress in thin-film parylene-C,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Las Vegas, 2002), pp. 435–438.

Sunderman, C.

J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 15th International Conference on Optical Fiber Sensors, (Portland, 2002), pp. 317–320.
[CrossRef]

Tai, Y. C.

T. A. Harder, T. J. Yao, Q. He, C. Y. Shih, and Y. C. Tai, “Residual stress in thin-film parylene-C,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Las Vegas, 2002), pp. 435–438.

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. Microw. Theory Tech.30(10), 1635–1641 (1982).
[CrossRef]

J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 15th International Conference on Optical Fiber Sensors, (Portland, 2002), pp. 317–320.
[CrossRef]

J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 16th International Conference on Optical Fiber Sensors, (Nara, 2003), pp. 214–217.

Wilkerson, M. H.

J. M. Williams, J. J. Bartos, and M. H. Wilkerson, “Elastic modulus dependence on density for polymeric foams with systematically changing microstructures,” J. Mater. Sci.25(12), 5134–5141 (1990).
[CrossRef]

Williams, J. M.

J. M. Williams, J. J. Bartos, and M. H. Wilkerson, “Elastic modulus dependence on density for polymeric foams with systematically changing microstructures,” J. Mater. Sci.25(12), 5134–5141 (1990).
[CrossRef]

Xuan, H. F.

Yao, T. J.

T. A. Harder, T. J. Yao, Q. He, C. Y. Shih, and Y. C. Tai, “Residual stress in thin-film parylene-C,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Las Vegas, 2002), pp. 435–438.

Appl. Opt. (2)

Electron. Lett. (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett.27(6), 518–520 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, “Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J. Quantum Electron.18(4), 683–689 (1982).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. Microw. Theory Tech.30(10), 1635–1641 (1982).
[CrossRef]

Int. J. Solids Struct. (1)

R. M. Christensen, “Mechanics of cellular and other low-density materials,” Int. J. Solids Struct.37(1-2), 93–104 (2000).
[CrossRef]

J. Acoust. Soc. Am. (2)

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber optic detection of sound,” J. Acoust. Soc. Am.62(5), 1136–1138 (1977).
[CrossRef]

J. Lightwave Technol. (1)

G. McDearmon, “Theoretical analysis of a push-pull fiber-optic hydrophone,” J. Lightwave Technol.5(5), 647–652 (1987).
[CrossRef]

J. Mater. Sci. (1)

J. M. Williams, J. J. Bartos, and M. H. Wilkerson, “Elastic modulus dependence on density for polymeric foams with systematically changing microstructures,” J. Mater. Sci.25(12), 5134–5141 (1990).
[CrossRef]

J. Phys. D (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D37(18), 197–216 (2004).
[CrossRef]

Opt. Express (3)

Polymer (Guildf.) (1)

Y. Liu and M. B. Huglin, “Effective crosslinking densities and elastic moduli of some physically crosslinked hydrogels,” Polymer (Guildf.)36(8), 1715–1718 (1995).
[CrossRef]

Other (8)

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and PropertiesII (Cambridge University, 1997), Chap. 4.

Shared Materials Instruction Facility in Duke University, https://smif.lab.duke.edu/pdf/UsefulParametersForParyleneDeposition.pdf

J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 15th International Conference on Optical Fiber Sensors, (Portland, 2002), pp. 317–320.
[CrossRef]

J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 16th International Conference on Optical Fiber Sensors, (Nara, 2003), pp. 214–217.

Specialty Coating Systems website, http://scscoatings.com

T. A. Harder, T. J. Yao, Q. He, C. Y. Shih, and Y. C. Tai, “Residual stress in thin-film parylene-C,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Las Vegas, 2002), pp. 435–438.

J. A. Bucaro, N. Lagakos, H. H. Cole, and T. G. Giallorenzi, “Fiber optic acoustic transduction,” in Physical Acoustics vol 16, W. P. Mason and R. N. Thurston, eds. (Academic Press Inc, 1982), pp. 385–457.

Y. M. Hu, Z. L. Hu, H. Luo, and L. N. Ma, “Recent progress toward fiber optic hydrophone research, application and commercialization in China,” Proc. SPIE 8421, 22nd International Conference on Optical Fiber Sensors, 84210Q (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross-section of HC-1550-02 fiber. Core diameter: 10.9 μm, inner microstructured cladding diameter: 70 μm. (a) Before etching by HF acid, the outer cladding diameter is 120 μm, and (b) after 9 min etching by HF acid, the outer cladding diameter is 96 μm.

Fig. 2
Fig. 2

(a) Coating configuration showing the fixture of fiber within the deposition chamber; (b) cross-section of a Parylene C coated HC-PBF. The diameter of the microstructured inner cladding is 70 μm. The diameter of the outer silica cladding is 84 μm (thickness: ~7 μm), and it is coated with Parylene C to a jacket diameter of 284 μm.

Fig. 3
Fig. 3

Experimental setup

Fig. 4
Fig. 4

(a) The acoustic test chamber filled with water; (b) three samples of HC-PBF sensing coils.

Fig. 5
Fig. 5

Output from (a) the PZT transducer and (b) the fiber interferometer, when an acoustic signal at 400 Hz is applied.

Fig. 6
Fig. 6

Measured acoustic responsivity of four different HC-PBF samples. Sample 1: HC-1550-02 fiber without coating. Sample 2: HC-1550-02 fiber with original coating. Sample 3: the thicknesses of the outer silica cladding and the Parylene C coating are resplectively 7 μm and 100 μm. Sample 4: the thicknesses of the outer silica cladding and the Parylene coating are resplectively 7 μm and 22 μm.

Fig. 7
Fig. 7

Model of Sample 3 HC-PBF for mechanical analysis

Fig. 8
Fig. 8

Sensitivity enhancement factor of Sample 3 over the HC-1550-02 fiber (Sample 2) for varying Young’s modulus of the polymer coating.

Fig. 9
Fig. 9

Calculated radial displacement for the HC-PBF Samples 2 and 3.

Tables (3)

Tables Icon

Table 1 Mean responsivity between 250 and 2000Hz for four samples with a length of 37cm

Tables Icon

Table 2 Physical parameters of the four HC-PBF samples

Tables Icon

Table 3 Enhancement factors of Sample 1, 3 and 4 relative to HC-1550-02 fiber (Sample 2)

Metrics