Abstract

Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hong, J. Zhu, and C. A. Mirkin, “Multiple ink nanolithography: toward a multiple-pen nano-plotter,” Science286(5439), 523–525 (1999).
    [CrossRef] [PubMed]
  2. U. Lüders, F. Sánchez, and J. Fontcuberta, “Self-organized structures in CoCr2O4 (001) thin films: tunable growth from pyramidal clusters to {111} fully faceted surface,” Phys. Rev. B70(4), 045403 (2004).
    [CrossRef]
  3. H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
    [CrossRef]
  4. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys.108(3), 034903 (2010).
    [CrossRef]
  5. A. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
    [CrossRef]
  6. T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
    [CrossRef]
  7. J. Li, S. Ho, M. Haque, and P. Herman, “Nanogratingbragg responses of femtosecond laser written optical waveguides in fused silica glass,” Opt. Mater. Express2(11), 1562–1570 (2012).
    [CrossRef]
  8. Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. Tsai, “Formation mechanisms of sub-wavelength ripples during fs laser pulse train processing of dielectrics,” J. Phys. D Appl. Phys.45(17), 175301 (2012).
    [CrossRef]
  9. H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
    [CrossRef]
  10. F. Liang, R. Vallée, and L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett.100(25), 251105 (2012).
    [CrossRef]
  11. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
    [CrossRef] [PubMed]
  12. J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express20(5), 5689–5695 (2012).
    [CrossRef] [PubMed]
  13. L. Jiang, D. Ying, X. Li, and Y. Lu, “Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering,” Opt. Lett.37(17), 3648–3650 (2012).
    [CrossRef] [PubMed]
  14. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
    [CrossRef]
  15. I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
    [CrossRef] [PubMed]
  16. K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays,” Adv. Mater.16(1), 73–76 (2004).
    [CrossRef]
  17. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express16(23), 19354–19365 (2008).
    [CrossRef] [PubMed]
  18. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett.36(2), 229–231 (2011).
    [CrossRef] [PubMed]
  19. H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi, “Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation,” Appl. Opt.46(23), 5792–5799 (2007).
    [CrossRef] [PubMed]
  20. E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
    [CrossRef] [PubMed]
  21. L. Jiang, X. Shi, X. Li, Y. Yuan, C. Wang, and Y. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express20(19), 21505–21511 (2012).
    [CrossRef] [PubMed]
  22. J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
    [CrossRef]
  23. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci.252(13), 4702–4706 (2006).
    [CrossRef]
  24. J. Wang and C. Guo, “Permanent recording of light helicity on optically inactive metal surfaces,” Opt. Lett.31(24), 3641–3643 (2006).
    [CrossRef] [PubMed]
  25. K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express20(1), 120–127 (2012).
    [CrossRef] [PubMed]
  26. D. Hwang, C. Grigoropoulos, and T. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys.99(8), 083101 (2006).
    [CrossRef]
  27. T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett.92(1), 013104 (2008).
    [CrossRef]
  28. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
    [CrossRef] [PubMed]
  29. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  30. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011).
    [CrossRef] [PubMed]
  31. X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).
    [CrossRef]
  32. J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
    [CrossRef]
  33. J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
    [CrossRef]
  34. B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structures on crystalline silicon,” J. Micromech. Microeng.16(5), 1080–1085 (2006).
    [CrossRef]
  35. M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
    [CrossRef]
  36. W. Zhang, G. Cheng, and Q. Feng, “Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation,” Appl. Surf. Sci.263, 436–439 (2012).
    [CrossRef]

2012

J. Li, S. Ho, M. Haque, and P. Herman, “Nanogratingbragg responses of femtosecond laser written optical waveguides in fused silica glass,” Opt. Mater. Express2(11), 1562–1570 (2012).
[CrossRef]

Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. Tsai, “Formation mechanisms of sub-wavelength ripples during fs laser pulse train processing of dielectrics,” J. Phys. D Appl. Phys.45(17), 175301 (2012).
[CrossRef]

F. Liang, R. Vallée, and L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett.100(25), 251105 (2012).
[CrossRef]

J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express20(5), 5689–5695 (2012).
[CrossRef] [PubMed]

L. Jiang, D. Ying, X. Li, and Y. Lu, “Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering,” Opt. Lett.37(17), 3648–3650 (2012).
[CrossRef] [PubMed]

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

L. Jiang, X. Shi, X. Li, Y. Yuan, C. Wang, and Y. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express20(19), 21505–21511 (2012).
[CrossRef] [PubMed]

K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express20(1), 120–127 (2012).
[CrossRef] [PubMed]

W. Zhang, G. Cheng, and Q. Feng, “Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation,” Appl. Surf. Sci.263, 436–439 (2012).
[CrossRef]

2011

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011).
[CrossRef] [PubMed]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
[CrossRef] [PubMed]

R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett.36(2), 229–231 (2011).
[CrossRef] [PubMed]

2010

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
[CrossRef]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys.108(3), 034903 (2010).
[CrossRef]

2009

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

2008

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett.92(1), 013104 (2008).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

A. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
[CrossRef]

2007

2006

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci.252(13), 4702–4706 (2006).
[CrossRef]

J. Wang and C. Guo, “Permanent recording of light helicity on optically inactive metal surfaces,” Opt. Lett.31(24), 3641–3643 (2006).
[CrossRef] [PubMed]

D. Hwang, C. Grigoropoulos, and T. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys.99(8), 083101 (2006).
[CrossRef]

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structures on crystalline silicon,” J. Micromech. Microeng.16(5), 1080–1085 (2006).
[CrossRef]

2004

K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays,” Adv. Mater.16(1), 73–76 (2004).
[CrossRef]

U. Lüders, F. Sánchez, and J. Fontcuberta, “Self-organized structures in CoCr2O4 (001) thin films: tunable growth from pyramidal clusters to {111} fully faceted surface,” Phys. Rev. B70(4), 045403 (2004).
[CrossRef]

2003

M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

1999

S. Hong, J. Zhu, and C. A. Mirkin, “Multiple ink nanolithography: toward a multiple-pen nano-plotter,” Science286(5439), 523–525 (1999).
[CrossRef] [PubMed]

Anastasiadis, S.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
[CrossRef]

Arai, A.

Ashkenasi, D.

Audouard, E.

Bai, B.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).
[CrossRef]

Barberoglou, M.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
[CrossRef]

Bestehorn, M.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci.252(13), 4702–4706 (2006).
[CrossRef]

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys.108(3), 034903 (2010).
[CrossRef]

Bounhalli, M.

Bovatsek, J.

Branz, H.

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Carey, J.

M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Castillejo, M.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
[CrossRef] [PubMed]

Chen, J. T.

Cheng, G.

W. Zhang, G. Cheng, and Q. Feng, “Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation,” Appl. Surf. Sci.263, 436–439 (2012).
[CrossRef]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

Chin, L.

F. Liang, R. Vallée, and L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett.100(25), 251105 (2012).
[CrossRef]

Choi, H. W.

Choi, T.

D. Hwang, C. Grigoropoulos, and T. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys.99(8), 083101 (2006).
[CrossRef]

Colombier, J. P.

Costache, F.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci.252(13), 4702–4706 (2006).
[CrossRef]

Crouch, C.

M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Dörr, D.

Dusser, B.

Epple, M.

Ezquerra, T. A.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
[CrossRef] [PubMed]

Farson, D. F.

Faure, N.

Feng, Q.

W. Zhang, G. Cheng, and Q. Feng, “Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation,” Appl. Surf. Sci.263, 436–439 (2012).
[CrossRef]

Fontcuberta, J.

U. Lüders, F. Sánchez, and J. Fontcuberta, “Self-organized structures in CoCr2O4 (001) thin films: tunable growth from pyramidal clusters to {111} fully faceted surface,” Phys. Rev. B70(4), 045403 (2004).
[CrossRef]

Fotakis, C.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
[CrossRef]

Friend, C. M.

M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Fukumori, Y.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett.92(1), 013104 (2008).
[CrossRef]

García-Gutiérrez, M. C.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

Garrelie, F.

Grigoropoulos, C.

D. Hwang, C. Grigoropoulos, and T. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys.99(8), 083101 (2006).
[CrossRef]

Gu, B.

Guo, C.

T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
[CrossRef]

A. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

J. Wang and C. Guo, “Permanent recording of light helicity on optically inactive metal surfaces,” Opt. Lett.31(24), 3641–3643 (2006).
[CrossRef] [PubMed]

Haque, M.

Hashimoto, S.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett.92(1), 013104 (2008).
[CrossRef]

Herman, P.

Hernández, J. J.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
[CrossRef] [PubMed]

Ho, S.

Hong, S.

S. Hong, J. Zhu, and C. A. Mirkin, “Multiple ink nanolithography: toward a multiple-pen nano-plotter,” Science286(5439), 523–525 (1999).
[CrossRef] [PubMed]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

Hwang, D.

D. Hwang, C. Grigoropoulos, and T. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys.99(8), 083101 (2006).
[CrossRef]

Hwang, T.

T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
[CrossRef]

Jiang, L.

Jin, G.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).
[CrossRef]

Jourlin, M.

Kao, Y. J.

Kinoshita, K.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett.92(1), 013104 (2008).
[CrossRef]

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys.108(3), 034903 (2010).
[CrossRef]

Lai, W. C.

Le Harzic, R.

Li, J.

Li, X.

Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. Tsai, “Formation mechanisms of sub-wavelength ripples during fs laser pulse train processing of dielectrics,” J. Phys. D Appl. Phys.45(17), 175301 (2012).
[CrossRef]

L. Jiang, D. Ying, X. Li, and Y. Lu, “Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering,” Opt. Lett.37(17), 3648–3650 (2012).
[CrossRef] [PubMed]

L. Jiang, X. Shi, X. Li, Y. Yuan, C. Wang, and Y. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express20(19), 21505–21511 (2012).
[CrossRef] [PubMed]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).
[CrossRef]

Li, Y.

Liang, F.

F. Liang, R. Vallée, and L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett.100(25), 251105 (2012).
[CrossRef]

Liu, W.

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Lou, K.

Lu, Y.

Lüders, U.

U. Lüders, F. Sánchez, and J. Fontcuberta, “Self-organized structures in CoCr2O4 (001) thin films: tunable growth from pyramidal clusters to {111} fully faceted surface,” Phys. Rev. B70(4), 045403 (2004).
[CrossRef]

Maeda, N.

Martín-Fabiani, I.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
[CrossRef] [PubMed]

Matsuo, S.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett.92(1), 013104 (2008).
[CrossRef]

Mazur, E.

M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Meier, D.

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Mirkin, C. A.

S. Hong, J. Zhu, and C. A. Mirkin, “Multiple ink nanolithography: toward a multiple-pen nano-plotter,” Science286(5439), 523–525 (1999).
[CrossRef] [PubMed]

Miyanishi, T.

Nedyalkov, N. N.

Neumeier, M.

Obara, G.

Obara, M.

P. Huang, Z.

K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays,” Adv. Mater.16(1), 73–76 (2004).
[CrossRef]

Page, M.

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Parriaux, O.

Pérez, S.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
[CrossRef] [PubMed]

Pigeon, F.

Q. Peng, K.

K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays,” Adv. Mater.16(1), 73–76 (2004).
[CrossRef]

Qian, S. X.

Rebollar, E.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
[CrossRef] [PubMed]

Reif, J.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci.252(13), 4702–4706 (2006).
[CrossRef]

Reynaud, S.

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

Roslaniec, Z.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

Rueda, D. R.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
[CrossRef] [PubMed]

Sagan, Z.

Sánchez, F.

U. Lüders, F. Sánchez, and J. Fontcuberta, “Self-organized structures in CoCr2O4 (001) thin films: tunable growth from pyramidal clusters to {111} fully faceted surface,” Phys. Rev. B70(4), 045403 (2004).
[CrossRef]

Sauer, D.

Sheehy, M.

M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Shen, M.

M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Sheu, J. K.

Shi, X.

Soder, H.

Spanakis, E.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
[CrossRef]

Stracke, F.

Stradins, P.

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Stratakis, E.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
[CrossRef]

Sun, Y.

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Szymczyk, A.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

Tan, B.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structures on crystalline silicon,” J. Micromech. Microeng.16(5), 1080–1085 (2006).
[CrossRef]

Tan, Q.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).
[CrossRef]

Terakawa, M.

Tomita, T.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett.92(1), 013104 (2008).
[CrossRef]

Tonchev, S.

Tsai, H.

Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. Tsai, “Formation mechanisms of sub-wavelength ripples during fs laser pulse train processing of dielectrics,” J. Phys. D Appl. Phys.45(17), 175301 (2012).
[CrossRef]

Tu, C.

Tzanetakis, P.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
[CrossRef]

Vallée, R.

F. Liang, R. Vallée, and L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett.100(25), 251105 (2012).
[CrossRef]

Varlamova, O.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci.252(13), 4702–4706 (2006).
[CrossRef]

Venkatakrishnan, K.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structures on crystalline silicon,” J. Micromech. Microeng.16(5), 1080–1085 (2006).
[CrossRef]

Vorobyev, A.

A. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

Wang, C.

Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. Tsai, “Formation mechanisms of sub-wavelength ripples during fs laser pulse train processing of dielectrics,” J. Phys. D Appl. Phys.45(17), 175301 (2012).
[CrossRef]

L. Jiang, X. Shi, X. Li, Y. Yuan, C. Wang, and Y. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express20(19), 21505–21511 (2012).
[CrossRef] [PubMed]

Wang, H. T.

Wang, J.

Wang, R.

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Wang, X. L.

Xiao, H.

Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. Tsai, “Formation mechanisms of sub-wavelength ripples during fs laser pulse train processing of dielectrics,” J. Phys. D Appl. Phys.45(17), 175301 (2012).
[CrossRef]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

Yang, J.

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Yang, Y. Y.

Ying, D.

Yost, V.

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Younkin, R.

M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Yuan, H.

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Yuan, Y.

Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. Tsai, “Formation mechanisms of sub-wavelength ripples during fs laser pulse train processing of dielectrics,” J. Phys. D Appl. Phys.45(17), 175301 (2012).
[CrossRef]

L. Jiang, X. Shi, X. Li, Y. Yuan, C. Wang, and Y. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express20(19), 21505–21511 (2012).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, G. Cheng, and Q. Feng, “Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation,” Appl. Surf. Sci.263, 436–439 (2012).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

Zhu, J.

K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays,” Adv. Mater.16(1), 73–76 (2004).
[CrossRef]

S. Hong, J. Zhu, and C. A. Mirkin, “Multiple ink nanolithography: toward a multiple-pen nano-plotter,” Science286(5439), 523–525 (1999).
[CrossRef] [PubMed]

Zhu, X.

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Zimmermann, H.

Zorba, V.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
[CrossRef]

ACS Nano

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Adv. Mater.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008).
[CrossRef]

K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays,” Adv. Mater.16(1), 73–76 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

F. Liang, R. Vallée, and L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett.100(25), 251105 (2012).
[CrossRef]

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett.92(1), 013104 (2008).
[CrossRef]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).
[CrossRef]

M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

Appl. Surf. Sci.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci.252(13), 4702–4706 (2006).
[CrossRef]

W. Zhang, G. Cheng, and Q. Feng, “Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation,” Appl. Surf. Sci.263, 436–439 (2012).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

J. Appl. Phys.

D. Hwang, C. Grigoropoulos, and T. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys.99(8), 083101 (2006).
[CrossRef]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys.108(3), 034903 (2010).
[CrossRef]

T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
[CrossRef]

J. Micromech. Microeng.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structures on crystalline silicon,” J. Micromech. Microeng.16(5), 1080–1085 (2006).
[CrossRef]

J. Phys. D

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. Tsai, “Formation mechanisms of sub-wavelength ripples during fs laser pulse train processing of dielectrics,” J. Phys. D Appl. Phys.45(17), 175301 (2012).
[CrossRef]

Langmuir

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012).
[CrossRef] [PubMed]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011).
[CrossRef] [PubMed]

Opt. Express

L. Jiang, X. Shi, X. Li, Y. Yuan, C. Wang, and Y. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express20(19), 21505–21511 (2012).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express20(5), 5689–5695 (2012).
[CrossRef] [PubMed]

K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express20(1), 120–127 (2012).
[CrossRef] [PubMed]

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater. Express

Phys. Rev. B

U. Lüders, F. Sánchez, and J. Fontcuberta, “Self-organized structures in CoCr2O4 (001) thin films: tunable growth from pyramidal clusters to {111} fully faceted surface,” Phys. Rev. B70(4), 045403 (2004).
[CrossRef]

Science

S. Hong, J. Zhu, and C. A. Mirkin, “Multiple ink nanolithography: toward a multiple-pen nano-plotter,” Science286(5439), 523–525 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. The insert depicts the relative angle between directions of the linearly polarized fs laser and the sample coordinate. HWP: half-wave plate; P: polarizer; S1: shutter; WS: white-light source; BS: beam splitter; L1: convex lens; DM: dichroic mirror; L2: achromatic doublet; S2: sample.

Fig. 2
Fig. 2

Scanned line-width as a function of directions of the linearly polarized laser. The pulse energy, repetition rate, and scanning speed are fixed at 0.75 J/cm2, 250 Hz, and 500 μm/s, respectively. The insets show the SEM images at different polarization directions; the blue arrow indicates the laser polarization direction.

Fig. 3
Fig. 3

Scanning time, with the scanning area of 1 × 1 mm2, shown as a function of directions of linearly polarized laser. The pulse energy, repetition rate, and scanning speed are fixed at 0.75 J/cm2, 250 Hz, and 500μm/s, respectively. The inserts show the SEM images of the scanning LIPSS; the blue arrow and red arrow indicate the polarization direction and the scanning direction, respectively.

Fig. 4
Fig. 4

(a) Schematic demonstration of the SPP scattering of the initially formed grooves (ripples) with different polarization directions on the surface of the silicon that is employed in numerical simulation. (b) The calculated electric field distributions based on SPP scattering on the surface of grooves whose structural parameters are chosen to be w = 0.4 μm, d = 0.7 μm, h = 0.1 μm, l = 2 μm. (c)Schematic diagram of the laser scanned line-width modulations with partial polarization directions.

Fig. 5
Fig. 5

(a) - (g) SEM images of multiple-shot ablated LIPSS fabricated by different directions of linearly polarized fs laser ranging from 0° to 150°; (h) SEM image of LIPSS under circular polarized fs laser irradiation. The number of irradiated laser pulses is 200 shots, and the laser pulse energy is 0.8 J/cm2 in all cases.

Fig. 6
Fig. 6

Dimensions and the anisotropy parameter (K) of the LIPSS ellipse-shaped region as a function of irradiated pulse numbers. The laser pulse energy is 0.8 J/cm2 in all cases. Inserts (a) - (h) SEM images of LIPSS with different pulse numbers. All the images share the same scale bar.

Metrics