Abstract

The concept, analysis, and design of series switches for graphene-strip plasmonic waveguides at near infrared frequencies are presented. Switching is achieved by using graphene’s field effect to selectively enable or forbid propagation on a section of the graphene strip waveguide, thereby allowing good transmission or high isolation, respectively. The electromagnetic modeling of the proposed structure is performed using full-wave simulations and a transmission line model combined with a matrix-transfer approach, which takes into account the characteristics of the plasmons supported by the different graphene-strip waveguide sections of the device. The performance of the switch is evaluated versus different parameters of the structure, including surrounding dielectric media, electrostatic gating and waveguide dimensions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
    [CrossRef] [PubMed]
  2. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
    [CrossRef]
  3. Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of plasmonics,” Adv. Phys.60, 799–898 (2011).
    [CrossRef]
  4. J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials2007, 79469 (2007).
    [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
    [CrossRef] [PubMed]
  6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Sensor Actuat. B.3, 388–394 (2009).
  7. J. Homola, S. S. Yeea, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensor Actuat. B.54, 3–15 (1999).
    [CrossRef]
  8. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater.6, 183–91 (2007).
    [CrossRef]
  9. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
    [CrossRef]
  10. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
    [CrossRef] [PubMed]
  11. M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable thz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
    [CrossRef]
  12. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photon.6, 749–758 (2012).
    [CrossRef]
  13. F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
    [CrossRef] [PubMed]
  14. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008).
    [CrossRef]
  15. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
    [CrossRef]
  16. A. Ferreira, N. M. R. Peres, and A. H. C. Neto, “Confined magneto-optical waves in graphene,” Phys. Rev. B85, 205426 (2012).
    [CrossRef]
  17. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
    [CrossRef]
  18. A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
    [CrossRef]
  19. D. L. Sounas and C. Caloz, “Edge surface modes in magnetically biased chemically doped graphene strips,” Appl. Phys. Lett.99, 231902 (2011).
    [CrossRef]
  20. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
    [CrossRef]
  21. E. H. Hwang and J. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007)
    [CrossRef]
  22. B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).
  23. T. Palacios, A. Hsu, and H. Wang, “Applications of graphene devices in rf communications,” IEEE Commun. Mag.48, 122–128 (2010).
    [CrossRef]
  24. K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett.95, 183105 (2009).
    [CrossRef]
  25. J. Perruisseau-Carrier, “Graphene for antenna applications: opportunities and challenges from microwaves to thz,” in Antennas and Propagation Conference (LAPC)Loughborough, UK (2012).
  26. Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene,” Europhys. Lett.92, 68001 (2010).
    [CrossRef]
  27. P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE T. Antenn. Propag.61, 1528–1537 (2013).
    [CrossRef]
  28. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
    [CrossRef] [PubMed]
  29. V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Physics11, 095013 (2009).
    [CrossRef]
  30. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
    [CrossRef]
  31. J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Effect of spatial dispersion on surfaces waves propagating along graphene sheets,” arXiv:1301.1337 (2012).
  32. Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting (IEDM)San Francisco, USA (2008)
  33. D. Berdebes, T. Low, and M. Lundstrom, “Low bias transport in graphene: An introduction,” in Proc. NCN@Purdue Summer Sch.-Electronics from the Bottom Up (2011)
  34. D. Pozar, Microwave Engineering(John Wiley and Sons, 2005).
  35. J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011).
    [CrossRef]
  36. X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
    [CrossRef] [PubMed]
  37. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
    [CrossRef] [PubMed]
  38. A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
    [CrossRef]
  39. S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
    [CrossRef]
  40. K. Geim, “Graphene: status and prospects,” Science324, 1530–1532 (2009).
    [CrossRef] [PubMed]
  41. Ansoft Corporation, “High frequency structure simulator (HFSS) v.14.,” (2012).
  42. R. E. Collin, Field theory of guided waves(IEEE, Piscataway, 1991)
  43. J. Jin, The finite element method in electromagnetic(Wiley, New York, 1993)
  44. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite element method for electromagnetics: antennas, microwave circuits, and scattering applications(IEEE, Piscataway, 1998).
    [CrossRef]

2013 (1)

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE T. Antenn. Propag.61, 1528–1537 (2013).
[CrossRef]

2012 (7)

J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Effect of spatial dispersion on surfaces waves propagating along graphene sheets,” arXiv:1301.1337 (2012).

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable thz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photon.6, 749–758 (2012).
[CrossRef]

A. Ferreira, N. M. R. Peres, and A. H. C. Neto, “Confined magneto-optical waves in graphene,” Phys. Rev. B85, 205426 (2012).
[CrossRef]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
[CrossRef]

Ansoft Corporation, “High frequency structure simulator (HFSS) v.14.,” (2012).

2011 (6)

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

D. L. Sounas and C. Caloz, “Edge surface modes in magnetically biased chemically doped graphene strips,” Appl. Phys. Lett.99, 231902 (2011).
[CrossRef]

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of plasmonics,” Adv. Phys.60, 799–898 (2011).
[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011).
[CrossRef]

2010 (4)

T. Palacios, A. Hsu, and H. Wang, “Applications of graphene devices in rf communications,” IEEE Commun. Mag.48, 122–128 (2010).
[CrossRef]

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene,” Europhys. Lett.92, 68001 (2010).
[CrossRef]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

2009 (8)

K. Geim, “Graphene: status and prospects,” Science324, 1530–1532 (2009).
[CrossRef] [PubMed]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Sensor Actuat. B.3, 388–394 (2009).

K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett.95, 183105 (2009).
[CrossRef]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Physics11, 095013 (2009).
[CrossRef]

2008 (2)

B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008).
[CrossRef]

2007 (5)

K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater.6, 183–91 (2007).
[CrossRef]

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials2007, 79469 (2007).
[CrossRef]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

E. H. Hwang and J. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007)
[CrossRef]

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
[CrossRef]

2004 (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

1999 (1)

J. Homola, S. S. Yeea, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensor Actuat. B.54, 3–15 (1999).
[CrossRef]

Ahn, J. H.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Alu, A.

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE T. Antenn. Propag.61, 1528–1537 (2013).
[CrossRef]

Appenzeller, J.

Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting (IEDM)San Francisco, USA (2008)

Argyropoulos, C.

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE T. Antenn. Propag.61, 1528–1537 (2013).
[CrossRef]

Avrutsky, I.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials2007, 79469 (2007).
[CrossRef]

Bae, S.

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011).
[CrossRef]

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Balakrishnan, J.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Baldo, M. A.

K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett.95, 183105 (2009).
[CrossRef]

Bao, W.

B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Berdebes, D.

D. Berdebes, T. Low, and M. Lundstrom, “Low bias transport in graphene: An introduction,” in Proc. NCN@Purdue Summer Sch.-Electronics from the Bottom Up (2011)

Bludov, Y. V.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene,” Europhys. Lett.92, 68001 (2010).
[CrossRef]

Bockrath, M.

B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).

Bostwick, A.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

Bruck, J.

B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Bulovic, V.

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

Caloz, C.

D. L. Sounas and C. Caloz, “Edge surface modes in magnetically biased chemically doped graphene strips,” Appl. Phys. Lett.99, 231902 (2011).
[CrossRef]

Carbotte, J. B.

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Physics11, 095013 (2009).
[CrossRef]

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Chatterjee, A.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite element method for electromagnetics: antennas, microwave circuits, and scattering applications(IEEE, Piscataway, 1998).
[CrossRef]

Chen, P. Y.

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE T. Antenn. Propag.61, 1528–1537 (2013).
[CrossRef]

Chen, Z.

Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting (IEDM)San Francisco, USA (2008)

Choi, E. J.

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011).
[CrossRef]

Choi, J. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Collin, R. E.

R. E. Collin, Field theory of guided waves(IEEE, Piscataway, 1991)

Crassee, I.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

Dai, H.

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

de Abajo, F. J. G.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Dresselhaus, M.

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Elser, J.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials2007, 79469 (2007).
[CrossRef]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
[CrossRef]

Ferreira, A.

A. Ferreira, N. M. R. Peres, and A. H. C. Neto, “Confined magneto-optical waves in graphene,” Phys. Rev. B85, 205426 (2012).
[CrossRef]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

Gauglitzb, G.

J. Homola, S. S. Yeea, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensor Actuat. B.54, 3–15 (1999).
[CrossRef]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Geim, K.

K. Geim, “Graphene: status and prospects,” Science324, 1530–1532 (2009).
[CrossRef] [PubMed]

K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater.6, 183–91 (2007).
[CrossRef]

Gómez-Díaz, J. S.

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
[CrossRef]

M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable thz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Effect of spatial dispersion on surfaces waves propagating along graphene sheets,” arXiv:1301.1337 (2012).

Govyadinov, A. A.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials2007, 79469 (2007).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photon.6, 749–758 (2012).
[CrossRef]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

Guo, J.

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Physics11, 095013 (2009).
[CrossRef]

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008).
[CrossRef]

Heongkeun, K.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Ho, J. Z.

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

Homola, J.

J. Homola, S. S. Yeea, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensor Actuat. B.54, 3–15 (1999).
[CrossRef]

Hong, B. H.

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011).
[CrossRef]

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Hsu, A.

T. Palacios, A. Hsu, and H. Wang, “Applications of graphene devices in rf communications,” IEEE Commun. Mag.48, 122–128 (2010).
[CrossRef]

Hwang, E. H.

E. H. Hwang and J. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007)
[CrossRef]

Iijima, S.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Sensor Actuat. B.3, 388–394 (2009).

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Jia, X.

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Jin, J.

J. Jin, The finite element method in electromagnetic(Wiley, New York, 1993)

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Sensor Actuat. B.3, 388–394 (2009).

Kempa, K.

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of plasmonics,” Adv. Phys.60, 799–898 (2011).
[CrossRef]

Kempel, L. C.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite element method for electromagnetics: antennas, microwave circuits, and scattering applications(IEEE, Piscataway, 1998).
[CrossRef]

Kim, H. R.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Kim, J. Y.

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011).
[CrossRef]

Kim, K. S.

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011).
[CrossRef]

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Kim, Y. J.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Kong, J.

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett.95, 183105 (2009).
[CrossRef]

Koppens, F. H.

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Koppens, F. H. L.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Kuzmenko, A. B.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

Lau, C. N.

B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).

Lee, C.

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011).
[CrossRef]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Lee, Y.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Lei, T.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Levallois, J.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

Li, X.

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

Low, T.

D. Berdebes, T. Low, and M. Lundstrom, “Low bias transport in graphene: An introduction,” in Proc. NCN@Purdue Summer Sch.-Electronics from the Bottom Up (2011)

Lundstrom, M.

D. Berdebes, T. Low, and M. Lundstrom, “Low bias transport in graphene: An introduction,” in Proc. NCN@Purdue Summer Sch.-Electronics from the Bottom Up (2011)

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Martín-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Milaninia, K. M.

K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett.95, 183105 (2009).
[CrossRef]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Mosig, J. R.

J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Effect of spatial dispersion on surfaces waves propagating along graphene sheets,” arXiv:1301.1337 (2012).

M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable thz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

Neto, A. H. C.

A. Ferreira, N. M. R. Peres, and A. H. C. Neto, “Confined magneto-optical waves in graphene,” Phys. Rev. B85, 205426 (2012).
[CrossRef]

Nezich, D.

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photon.6, 749–758 (2012).
[CrossRef]

K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater.6, 183–91 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Ostler, M.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

Özyilmaz, B.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Palacios, T.

T. Palacios, A. Hsu, and H. Wang, “Applications of graphene devices in rf communications,” IEEE Commun. Mag.48, 122–128 (2010).
[CrossRef]

Park, J. S.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Peres, N. M. R.

A. Ferreira, N. M. R. Peres, and A. H. C. Neto, “Confined magneto-optical waves in graphene,” Phys. Rev. B85, 205426 (2012).
[CrossRef]

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene,” Europhys. Lett.92, 68001 (2010).
[CrossRef]

Perruisseau-Carrier, J.

J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Effect of spatial dispersion on surfaces waves propagating along graphene sheets,” arXiv:1301.1337 (2012).

M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable thz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
[CrossRef]

J. Perruisseau-Carrier, “Graphene for antenna applications: opportunities and challenges from microwaves to thz,” in Antennas and Propagation Conference (LAPC)Loughborough, UK (2012).

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Plummer, E. W.

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of plasmonics,” Adv. Phys.60, 799–898 (2011).
[CrossRef]

Podolskiy, V. A.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials2007, 79469 (2007).
[CrossRef]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photon.6, 749–758 (2012).
[CrossRef]

Pozar, D.

D. Pozar, Microwave Engineering(John Wiley and Sons, 2005).

Reina, A.

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett.95, 183105 (2009).
[CrossRef]

Rotenberg, E.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

Salakhutdinov, I.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials2007, 79469 (2007).
[CrossRef]

Sarma, J. D.

E. H. Hwang and J. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007)
[CrossRef]

Seyller, T.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Physics11, 095013 (2009).
[CrossRef]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Son, H.

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

Song, Y. I.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Sounas, D. L.

D. L. Sounas and C. Caloz, “Edge surface modes in magnetically biased chemically doped graphene strips,” Appl. Phys. Lett.99, 231902 (2011).
[CrossRef]

Standley, B.

B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).

Tamagnone, M.

M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable thz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

Thongrattanasiri, S.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

van der Marel, D.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

Varlamov, A. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
[CrossRef]

Vasilevskiy, M. I.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene,” Europhys. Lett.92, 68001 (2010).
[CrossRef]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Sensor Actuat. B.3, 388–394 (2009).

Volakis, J. L.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite element method for electromagnetics: antennas, microwave circuits, and scattering applications(IEEE, Piscataway, 1998).
[CrossRef]

Walter, A. L.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

Wang, H.

T. Palacios, A. Hsu, and H. Wang, “Applications of graphene devices in rf communications,” IEEE Commun. Mag.48, 122–128 (2010).
[CrossRef]

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

Wang, X.

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of plasmonics,” Adv. Phys.60, 799–898 (2011).
[CrossRef]

Weber, P. K.

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

Xu, X.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Yeea, S. S.

J. Homola, S. S. Yeea, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensor Actuat. B.54, 3–15 (1999).
[CrossRef]

Yoon, Y.

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

Zhang, H.

B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).

Zhang, L.

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Zheng, Y.

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

ACS Nano (1)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Adv. Phys. (1)

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of plasmonics,” Adv. Phys.60, 799–898 (2011).
[CrossRef]

Appl. Phys. Lett. (5)

M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable thz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

D. L. Sounas and C. Caloz, “Edge surface modes in magnetically biased chemically doped graphene strips,” Appl. Phys. Lett.99, 231902 (2011).
[CrossRef]

B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).

K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett.95, 183105 (2009).
[CrossRef]

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011).
[CrossRef]

Eur. Phys. J. B (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
[CrossRef]

Europhys. Lett. (1)

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene,” Europhys. Lett.92, 68001 (2010).
[CrossRef]

IEEE Commun. Mag. (1)

T. Palacios, A. Hsu, and H. Wang, “Applications of graphene devices in rf communications,” IEEE Commun. Mag.48, 122–128 (2010).
[CrossRef]

IEEE T. Antenn. Propag. (1)

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE T. Antenn. Propag.61, 1528–1537 (2013).
[CrossRef]

J. Appl. Phys. (2)

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
[CrossRef]

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008).
[CrossRef]

J. Nanomaterials (1)

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials2007, 79469 (2007).
[CrossRef]

Nano Lett. (2)

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009).
[CrossRef]

Nat Nano (1)

S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009).
[CrossRef] [PubMed]

Nature Mater. (1)

K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater.6, 183–91 (2007).
[CrossRef]

Nature Photon. (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photon.6, 749–758 (2012).
[CrossRef]

Nature Phys. (1)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010).
[CrossRef]

New J. Physics (1)

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Physics11, 095013 (2009).
[CrossRef]

Phys. Rev. B (4)

E. H. Hwang and J. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007)
[CrossRef]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

A. Ferreira, N. M. R. Peres, and A. H. C. Neto, “Confined magneto-optical waves in graphene,” Phys. Rev. B85, 205426 (2012).
[CrossRef]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Science (5)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009).
[CrossRef] [PubMed]

K. Geim, “Graphene: status and prospects,” Science324, 1530–1532 (2009).
[CrossRef] [PubMed]

Sensor Actuat. B. (2)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Sensor Actuat. B.3, 388–394 (2009).

J. Homola, S. S. Yeea, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensor Actuat. B.54, 3–15 (1999).
[CrossRef]

Other (9)

J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Effect of spatial dispersion on surfaces waves propagating along graphene sheets,” arXiv:1301.1337 (2012).

Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting (IEDM)San Francisco, USA (2008)

D. Berdebes, T. Low, and M. Lundstrom, “Low bias transport in graphene: An introduction,” in Proc. NCN@Purdue Summer Sch.-Electronics from the Bottom Up (2011)

D. Pozar, Microwave Engineering(John Wiley and Sons, 2005).

J. Perruisseau-Carrier, “Graphene for antenna applications: opportunities and challenges from microwaves to thz,” in Antennas and Propagation Conference (LAPC)Loughborough, UK (2012).

Ansoft Corporation, “High frequency structure simulator (HFSS) v.14.,” (2012).

R. E. Collin, Field theory of guided waves(IEEE, Piscataway, 1991)

J. Jin, The finite element method in electromagnetic(Wiley, New York, 1993)

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite element method for electromagnetics: antennas, microwave circuits, and scattering applications(IEEE, Piscataway, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Normalized dispersion relation (a), attenuation constant (b), and real and imaginary components (c–d) of the characteristic impedance of a SPP wave propagating on an air-graphene-dielectric interface versus graphene chemical potential μc computed using Eqs. (7) and (8). The dielectric permittivity is εr = 4.0 and graphene parameters are T = 300 K and τ = 0.2 ps.

Fig. 2
Fig. 2

Proposed graphene-based 2D sheet plasmonic switch. The device comprises a monolayer graphene sheet transferred onto a dielectric (εr) and three polysilicon gating pads placed at a distance t below the sheet. The permittivity of the supporting substrate is also set to εr. The guiding properties of the SPP propagating along the sheet are controlled via the electric field effect by the DC bias applied to the gating pads. (a) Switch ON. Simulated results showing the z component of the electric field, Ez, of a SPP wave propagating along the sheet. The central and outer pads are biased with voltages Vout and Vin, chosen to provide the same chemical potential (μc = 0.5 eV) to the whole graphene sheet. (b) Switch OFF. Similar to (a) but here Vin is chosen to provide a chemical potential of μc = 0.1 eV to the inner surface of the graphene sheet. The parameters of the structure are εr = 4.0, L = 350 nm, in = 50 nm, t = 20 nm, T = 300 K, τ = 0.2 ps, and the operation frequency is set to 28 THz.

Fig. 3
Fig. 3

Proposed graphene-based strip plasmonic switch. The device is similar to the switch shown in Fig. 2, but here the graphene sheet is replaced by a strip of width W. (a) Switch ON. Simulated results showing the z component of the electric field, Ez, of a SPP wave propagating along the strip. The voltages Vout and Vin are chosen to provide the same chemical potential (μc = 0.5 eV) to the whole graphene strip. (b) Switch OFF. Similar to (a) but here Vin is chosen to provide a chemical potential of μc = 0.1 eV to the inner section of the strip. The parameters of the structure are εr = 4.0, L = 350 nm, W = 150 nm, in = 50 nm, t = 20 nm, T = 300 K, τ = 0.2 ps, and the operation frequency is set to 28 THz.

Fig. 4
Fig. 4

Cross section of the proposed switch and chemical potential profile along the ‘x’ axis of the graphene area for the ON and OFF states of the device. The different contributions to the chemical potential of graphene (solid line), namely chemical doping (dotted line) and elecrostatic DC bias (dashed line), are also shown. (a) Uniformly highly chemically doped graphene. The OFF state is obtained by applying a negative DC bias to the central gating pad. (b) Non-uniformly chemically doped graphene. Outer and inner surfaces of graphene are highly and slightly chemically doped, respectively. The ON state is obtained by applying a positive DC bias to the central gating pad.

Fig. 5
Fig. 5

Equivalent transmission line model of the proposed graphene-based switches shown in Fig. 2 and in Fig. 3.

Fig. 6
Fig. 6

Scattering parameters of the structure shown in Fig. 2, with εr = 1, L = 3 μm and in = 1 μm, computed using the transmission line approach and the commercial software HFSS. The chemical potential of the outer and central graphene waveguide sections are set to μcout = 0.2 eV and μcin = 0.15 eV.

Fig. 7
Fig. 7

Simulated scattering parameters of the proposed graphene-based switches, suspended in free-space, at their ON and OFF states. The parameters of the device are L = 1.75 μm and in = 0.5 μm. (a) Graphene-based 2D sheet switch, see Fig. 2. (b) Graphene-based strip switch with W = 0.2 μm, see Fig. 3.

Fig. 8
Fig. 8

Power transmitted, reflected, and dissipated in the graphene-based strip plasmonic switch shown in Fig. 7(b). The superscripts ON and OFF are related to the operation state of the switch, and the subscripts T, R, and D refer to the power transmitted towards the output port, reflected into the input port, and dissipated in the structure, respectively.

Fig. 9
Fig. 9

Parametric study of the isolation (S21) provided by the proposed graphene-based switches as a function of the length (in) and chemical potential (μcin) of their central waveguide section at the fixed frequency of 28 THz. The length of the devices (L = 1.75 μm) is kept constant in all cases. (a) Graphene-based 2D sheet switch, see Fig. 2. (b) Graphene-based strip switch with W = 0.2 μm, see Fig. 3.

Fig. 10
Fig. 10

Simulated scattering parameters of the proposed graphene-based switches at their states ON and OFF. The parameters of the structure are εr = 4.0, L = 0.7 μm and in = 0.2 μm. (a) Graphene-based 2D sheet switch, see Fig. 2. (b) Graphene-based strip switch with W = 0.2 μm, see Fig. 3.

Fig. 11
Fig. 11

Parametric study of the isolation (S21) provided by the proposed graphene-based switches as a function of the length (in) and chemical potential (μcin) of their central waveguide section at the fixed frequency of 28 THz. The length of the devices (L = 1.75 μm) is kept constant in all cases. The dielectric permittivity is set to εr = 4.0. (a) Graphene-based 2D sheet switch, see Fig. 2. (b) Graphene-based strip switch with W = 0.2 μm, see Fig. 3.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω , μ c , Γ , T ) = j q e 2 ( ω j 2 T ) π h ¯ 2 [ 1 ( ω j 2 Γ ) 2 0 ε ( f d ( ε ) ε f d ( ε ) ε ) ε 0 f d ( ε ) f d ( ε ) ( ω j 2 Γ ) 2 4 ( ε / h ¯ ) 2 ] ε ,
f d ( ε ) = ( e ( ε | μ c | ) / k B T + 1 ) 1 .
C ox V D C = q e n s ,
n s = 2 π h ¯ 2 v f 2 0 ε [ f d ( ε μ c ) f d ( ε + μ c ) ] ε ,
μ c h ¯ v f π C ox V D C q ,
n s = 1 π ( μ c h ¯ v f ) 2 .
ω ε r 1 ε 0 ε r 1 k 0 2 k ρ 2 ω ε r 2 ε 0 ε r 2 k 0 2 k ρ 2 = σ ,
Z C = k ρ ω ε 0 ε eff ,
P T = | S 21 | 2 ,
P R = | S 11 | 2 ,
P D = 1 | S 11 | 2 | S 21 | 2 ,

Metrics