Abstract

The absorption and heat accumulation of successive ultrashort laser pulses in fused silica leads to melting of the material. We analyze the structure and formation of disruptions that occur within the trace of the molten material. We employed focused ion beam (FIB) milling to reveal the inner structure of these disruptions. The disruptions consist of several small voids which form a large cavity with a diameter of several tens of micrometer. Based on the observations, we suggest a model explaining the formation of these disruptions as a results of a fast quenching process of the molten material after the laser irradiation has stopped. In addition, we analyzed the periodic and non-periodic formation of disruptions. The processing parameters strongly influence the formation of disruptions.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Itoh, W. Watanbe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull., 31, 620–625 (2006).
    [CrossRef]
  2. R. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics, 2, 219–225 (2008).
    [CrossRef]
  3. A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,” J. Phys. B - At. Mol. Opt., 43, 163001 (2010).
    [CrossRef]
  4. Y. Shimotsuma, P.G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultra-short Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
    [CrossRef] [PubMed]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Threedimensional optical storage inside transparent materials,” Opt. Lett.21, 2023–2025 (1996).
    [CrossRef] [PubMed]
  6. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
    [CrossRef]
  7. E. G. Gamaly, S. Juodkazis, K. Nishimura, and H. Misawa, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
    [CrossRef]
  8. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88,201909 (2006).
  9. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.25, 1669–1671 (2000).
    [CrossRef]
  10. H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
    [CrossRef]
  11. C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
    [CrossRef] [PubMed]
  12. C. Miese, M. J. Withford, and A. Fuerbach, “Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime,” Opt. Express19, 19542–19550 (2011).
    [CrossRef] [PubMed]
  13. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” New J. Phys.9, 1–9 (2007).
    [CrossRef]
  14. C.B. Schaffer, J.F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
    [CrossRef]
  15. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  16. W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett89, 021106 (2006).
    [CrossRef]
  17. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl.Phys. A103, 257–261 (2011).
    [CrossRef]
  18. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19, 6807–6821 (2011).
    [CrossRef] [PubMed]
  19. R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007).
    [CrossRef]
  20. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
    [CrossRef]
  21. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
    [CrossRef]
  22. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoen.2, 57–63 (2007).
    [CrossRef]
  23. T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys.51, 2403 (2012).
  24. S. Spinner and R.M. Waxler, “Relation between refractive index and density of glasses resulting from annealing compared with corresponding relation resulting from compression,” Appl. Optics5, 1886–1888 (1966).
    [CrossRef]
  25. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003).
    [CrossRef] [PubMed]
  26. J. W. Chan, T. R. Huser, S. R. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A76, 367–372 (2003).
    [CrossRef]
  27. E. B. Shand, Engineering Glass, Modern Materials(Academic Press, New York1968) Vol. 6, p. 262.
  28. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass” Opt. Express, 19, 5725–5734 (2011).
    [CrossRef] [PubMed]
  29. R. Kelly and A. Miotello, “Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses” Phys. Rev. E,60, 2616–2625 (1999).
    [CrossRef]
  30. M. Sakakura, M. Teratsuma, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express15, 5674–5686 (2007).
    [CrossRef] [PubMed]
  31. U. Fuchs, U. D. Zeitner, and A. Tünnermann, “Ultra-short pulse propagation in complex optical systems,” Opt. Express13, 3852–3862 (2005).
    [CrossRef] [PubMed]
  32. J. J. Stamnes, Waves in Focal Regions(Taylor & Francis, New York, 1986).
  33. http://assets.newport.com/webDocuments-EN/images/16000.pdf ; 20/01/2013.
  34. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McCraw-Hill, New York, 1996).
  35. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.( Acadamic Press, San Diego, 2001).

2019

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88,201909 (2006).

2012

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys.51, 2403 (2012).

2011

2010

A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,” J. Phys. B - At. Mol. Opt., 43, 163001 (2010).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

2008

2007

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” New J. Phys.9, 1–9 (2007).
[CrossRef]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoen.2, 57–63 (2007).
[CrossRef]

M. Sakakura, M. Teratsuma, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express15, 5674–5686 (2007).
[CrossRef] [PubMed]

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

2006

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett89, 021106 (2006).
[CrossRef]

K. Itoh, W. Watanbe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull., 31, 620–625 (2006).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, and H. Misawa, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

2005

2003

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003).
[CrossRef] [PubMed]

J. W. Chan, T. R. Huser, S. R. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A76, 367–372 (2003).
[CrossRef]

Y. Shimotsuma, P.G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultra-short Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

C.B. Schaffer, J.F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

2000

1999

R. Kelly and A. Miotello, “Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses” Phys. Rev. E,60, 2616–2625 (1999).
[CrossRef]

1997

N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
[CrossRef]

1996

1966

S. Spinner and R.M. Waxler, “Relation between refractive index and density of glasses resulting from annealing compared with corresponding relation resulting from compression,” Appl. Optics5, 1886–1888 (1966).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.( Acadamic Press, San Diego, 2001).

Apolonski, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007).
[CrossRef]

Audouard, E.

Bellouard, Y.

Brueckner, H. J.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007).
[CrossRef]

Callan, J. P.

Chan, J. W.

J. W. Chan, T. R. Huser, S. R. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A76, 367–372 (2003).
[CrossRef]

Chen, W.-J.

Cheng, Y.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

Chichkov, B. N.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007).
[CrossRef]

Döring, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl.Phys. A103, 257–261 (2011).
[CrossRef]

Dubov, M.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007).
[CrossRef]

Eaton, S. M.

Fernandez, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007).
[CrossRef]

Finlay, R. J.

Franco, M.

Fuchs, U.

Fuerbach, A.

Gamaly, E. G.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88,201909 (2006).

E. G. Gamaly, S. Juodkazis, K. Nishimura, and H. Misawa, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Garcia, J.F.

C.B. Schaffer, J.F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

Gattas, R. R.

R. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics, 2, 219–225 (2008).
[CrossRef]

Glezer, E. N.

Glezer, N.

N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McCraw-Hill, New York, 1996).

Gottmann, J.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoen.2, 57–63 (2007).
[CrossRef]

Graf, R.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007).
[CrossRef]

Hashimoto, T.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88,201909 (2006).

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” New J. Phys.9, 1–9 (2007).
[CrossRef]

Hayasaki, Y.

Hayashi, K.

Heinrich, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

Her, T.-H.

Herman, P. R.

Hertel, I. V.

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

M. Sakakura, M. Teratsuma, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express15, 5674–5686 (2007).
[CrossRef] [PubMed]

Y. Shimotsuma, P.G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultra-short Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Ho, S.

Hongler, M.-O.

Horn, A.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoen.2, 57–63 (2007).
[CrossRef]

Huang, L.

Huot, N.

Huser, T. R.

J. W. Chan, T. R. Huser, S. R. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A76, 367–372 (2003).
[CrossRef]

Isaka, M.

Itoh, K.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys.51, 2403 (2012).

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett89, 021106 (2006).
[CrossRef]

K. Itoh, W. Watanbe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull., 31, 620–625 (2006).
[CrossRef]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.25, 1669–1671 (2000).
[CrossRef]

Jia, T.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

Juodkazis, S.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88,201909 (2006).

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass” Opt. Express, 19, 5725–5734 (2011).
[CrossRef] [PubMed]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” New J. Phys.9, 1–9 (2007).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, and H. Misawa, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Kazansky, P.G.

Y. Shimotsuma, P.G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultra-short Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Kelly, R.

R. Kelly and A. Miotello, “Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses” Phys. Rev. E,60, 2616–2625 (1999).
[CrossRef]

Kley, E. B.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

Krol, D. M.

J. W. Chan, T. R. Huser, S. R. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A76, 367–372 (2003).
[CrossRef]

Landon, S.

Li, C.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

Li, J.

Luther-Davies, B.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88,201909 (2006).

Matsumoto, M.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys.51, 2403 (2012).

Mauclair, C.

Mazur, E.

R. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics, 2, 219–225 (2008).
[CrossRef]

C.B. Schaffer, J.F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Threedimensional optical storage inside transparent materials,” Opt. Lett.21, 2023–2025 (1996).
[CrossRef] [PubMed]

Mermillod-Blondin, A.

Miese, C.

Milosavljevic, M.

Miotello, A.

R. Kelly and A. Miotello, “Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses” Phys. Rev. E,60, 2616–2625 (1999).
[CrossRef]

Misawa, H.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88,201909 (2006).

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” New J. Phys.9, 1–9 (2007).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, and H. Misawa, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

M. Sakakura, M. Teratsuma, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express15, 5674–5686 (2007).
[CrossRef] [PubMed]

Miyamoto, I.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoen.2, 57–63 (2007).
[CrossRef]

Myiamoto, I.

Mysyrowicz, A.

Nakaya, T.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

Ng, M. L.

Nishii, J.

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, and H. Misawa, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Nolte, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl.Phys. A103, 257–261 (2011).
[CrossRef]

A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,” J. Phys. B - At. Mol. Opt., 43, 163001 (2010).
[CrossRef]

K. Itoh, W. Watanbe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull., 31, 620–625 (2006).
[CrossRef]

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

Onda, S.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett89, 021106 (2006).
[CrossRef]

Ozeki, Y.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys.51, 2403 (2012).

Peschel, U.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

Plech, A.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

Poumellec, B.

Prade, B.

Qiu, J.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

Y. Shimotsuma, P.G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultra-short Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Richter, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl.Phys. A103, 257–261 (2011).
[CrossRef]

Risbud, S. R.

J. W. Chan, T. R. Huser, S. R. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A76, 367–372 (2003).
[CrossRef]

Rosenfeld, A.

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

M. Sakakura, M. Teratsuma, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express15, 5674–5686 (2007).
[CrossRef] [PubMed]

Schaffer, C. B.

K. Itoh, W. Watanbe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull., 31, 620–625 (2006).
[CrossRef]

Schaffer, C.B.

C.B. Schaffer, J.F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

Shand, E. B.

E. B. Shand, Engineering Glass, Modern Materials(Academic Press, New York1968) Vol. 6, p. 262.

Shimizu, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

M. Sakakura, M. Teratsuma, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express15, 5674–5686 (2007).
[CrossRef] [PubMed]

Y. Shimotsuma, P.G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultra-short Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Song, J.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

Spinner, S.

S. Spinner and R.M. Waxler, “Relation between refractive index and density of glasses resulting from annealing compared with corresponding relation resulting from compression,” Appl. Optics5, 1886–1888 (1966).
[CrossRef]

Stamnes, J. J.

J. J. Stamnes, Waves in Focal Regions(Taylor & Francis, New York, 1986).

Steinert, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

Stoian, R.

Sudrie, L.

Sun, H.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

Szameit, A.

A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,” J. Phys. B - At. Mol. Opt., 43, 163001 (2010).
[CrossRef]

Takita, A.

Tamaki, T.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett89, 021106 (2006).
[CrossRef]

Teratsuma, M.

Toma, T.

Tünnermann, A.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl.Phys. A103, 257–261 (2011).
[CrossRef]

U. Fuchs, U. D. Zeitner, and A. Tünnermann, “Ultra-short pulse propagation in complex optical systems,” Opt. Express13, 3852–3862 (2005).
[CrossRef] [PubMed]

Wang, X.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

Watanabe, W.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett89, 021106 (2006).
[CrossRef]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.25, 1669–1671 (2000).
[CrossRef]

Watanbe, W.

K. Itoh, W. Watanbe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull., 31, 620–625 (2006).
[CrossRef]

Waxler, R.M.

S. Spinner and R.M. Waxler, “Relation between refractive index and density of glasses resulting from annealing compared with corresponding relation resulting from compression,” Appl. Optics5, 1886–1888 (1966).
[CrossRef]

Withford, M. J.

Wortmann, D.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoen.2, 57–63 (2007).
[CrossRef]

Xu, J.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

Xu, Z.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

Yamada, K.

Yoshino, F.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoen.2, 57–63 (2007).
[CrossRef]

Yoshino, T.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys.51, 2403 (2012).

Zeitner, U. D.

Zhang, H.

Zimmermann, F.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

Appl. Optics

S. Spinner and R.M. Waxler, “Relation between refractive index and density of glasses resulting from annealing compared with corresponding relation resulting from compression,” Appl. Optics5, 1886–1888 (1966).
[CrossRef]

Appl. Phys. A

J. W. Chan, T. R. Huser, S. R. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A76, 367–372 (2003).
[CrossRef]

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007).
[CrossRef]

C.B. Schaffer, J.F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

Appl. Phys. B.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007).
[CrossRef]

Appl. Phys. Lett

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett89, 021106 (2006).
[CrossRef]

Appl. Phys. Lett.

N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
[CrossRef]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88,201909 (2006).

Appl.Phys. A

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl.Phys. A103, 257–261 (2011).
[CrossRef]

J. Appl. Phys.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys.51, 2403 (2012).

J. Laser Micro. Nanoen.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoen.2, 57–63 (2007).
[CrossRef]

J. Phys. B - At. Mol. Opt.

A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,” J. Phys. B - At. Mol. Opt., 43, 163001 (2010).
[CrossRef]

Laser Photonics Rev.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012).
[CrossRef]

MRS Bull.

K. Itoh, W. Watanbe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull., 31, 620–625 (2006).
[CrossRef]

Nat. photonics

R. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics, 2, 219–225 (2008).
[CrossRef]

New J. Phys.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” New J. Phys.9, 1–9 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

E. G. Gamaly, S. Juodkazis, K. Nishimura, and H. Misawa, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Phys. Rev. E,

R. Kelly and A. Miotello, “Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses” Phys. Rev. E,60, 2616–2625 (1999).
[CrossRef]

Phys. Rev. Lett.

Y. Shimotsuma, P.G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultra-short Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Other

E. B. Shand, Engineering Glass, Modern Materials(Academic Press, New York1968) Vol. 6, p. 262.

J. J. Stamnes, Waves in Focal Regions(Taylor & Francis, New York, 1986).

http://assets.newport.com/webDocuments-EN/images/16000.pdf ; 20/01/2013.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McCraw-Hill, New York, 1996).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.( Acadamic Press, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a) Schematic of the inscription process. Ultrashort laser pulses with a repetition rate of several MHz are focused into a fused silica sample which is translated along the x direction. Within the traces of the molten material large disruptions (black spots) are formed. This appears always at the end of a molten line (b). The occurrence of disruptions within the molten material occurs either periodically (c) or non-periodically in a chaotic manner (d). The applied processing parameters are listed below the micrographs. The dashed lines retrace the molten region.

Fig. 2
Fig. 2

SEM images of a FIB slice depicting the internal structure of laser induced disruptions within the traces of molten material. The details of the disruptions originate from periodic (b) and non-periodic (c) disruptions, as shown in the micrograph (a).

Fig. 3
Fig. 3

Schematic of our simulation strategy. (a) The focusing optics (New Focus Asphere 5722, NA = 0.55) is modeled in ZEMAX to determine the wavefront of the incoming laserbeam at a reference sphere located in the exit pupil of the optics. (b) The optical wave is propagated from the reference sphere into the focal region using the angular spectrum operator.

Fig. 4
Fig. 4

Simulated intensity distribution inside the fused silica sample for a focusing depth of 225 μm in the (a) x–z plane and (b) y–z plane. The insets indicate the laser induced refractive index modification with a length of 93 μm and a width of 52 μm in x.

Fig. 5
Fig. 5

Simulation of the intensity distribution along the optical axis for various index modifications: (a) dependence on the maximal refractive index shift (b) dependence on the width of the index modification. The insets show the considered refractive index modifications.

Fig. 6
Fig. 6

Enlarged side view at the laser affected zone in different focusing depths. The upper part of the outer boundary of the molten material changes with the distance to the last disruption.

Fig. 7
Fig. 7

The distance between periodically formed disruptions as function of the pulse energy for different (a) repetition rates and (b) translation velocities. (c) The number of pulses required to form a disruption with respect to the processing parameters.

Fig. 8
Fig. 8

(a) Top view and (b) side view of the molten material and generated disruptions for different focusing depths. We used a red line to mark the focusing depth of 75 μm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U 2 ( x 2 , y 2 , z 2 ) = 1 { { U 1 ( x 1 , y 1 , z 1 ) } H ( f x , f y ) } ,
H = exp ( i k 0 n z 1 λ f x n λ f y n ) .
U 2 ( x 2 , y 2 , z 1 + Δ z ) = 1 { { U 1 ( x 1 , y 1 , z 1 ) } H ( Δ z ) } exp { i Δ z k 0 Δ n ( x 1 , y 1 , z 1 ) } .

Metrics