Abstract

We present the first non-resonant and non-enhanced Raman correlation spectroscopy experiments. They are conducted on a confocal microscope combined with a Raman spectrometer. The thermal fluctuations of the Raman intensities scattered by dispersions of polystyrene particles of sub-micrometric diameters are measured and analysed by deriving the autocorrelation functions (ACFs) of the intensities. We show that for particles of diameter down to 200 nm, RCS measurements are successfully obtained in spite of the absence of any source of amplification of the Raman signal. For particles of diameter ranging from 200 to 750 nm, the ACFs present a time-decay behaviour in accordance with the model of free Brownian particles. For particles of 1000 nm in diameter, the AFCs present a different behaviour with a much smaller characteristic time. This results from the dynamics of a single-Brownian particle trapped in the confocal volume by the optical forces of the focus spot.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Gouÿ, “Notes sur le mouvement Brownien,” J. de Phys.7(2), 561–563 (1888).
  2. A. Einstein, “On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat,” Ann. d. Phys.17, 549–560 (1905).
    [CrossRef]
  3. L. Bachelier, “Théorie de la spéculation,” Ann. sci. de l’ENS17(3), 21–86 (1900).
  4. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943).
    [CrossRef]
  5. H. Z. Cummins, N. Knable, and Y. Yeh, “Observation of diffusion broadening of Rayleigh light,” Phys. Rev. Lett.12(6), 150–153 (1964).
    [CrossRef]
  6. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Ed. Wiley & Sons, 1975).
  7. N. Pusey and B. Berne, Photon Correlation Spectroscopy and Velocimetry(Ed. by H. Z. Cummins and E.R. Pike, NATO advanced study institutes series: Physics, 1976).
  8. D. Magde, E. Elson, and W.W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
    [CrossRef]
  9. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. J. Biophys.22, 169–175 (1993).
    [CrossRef]
  10. R. Rigler, “Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology,” J. of. Biotechno.41, 177–186 (1995).
    [CrossRef]
  11. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002).
    [CrossRef]
  12. W. Schrof, J. F. Klinger, S. Rozouvan, and D. Horn, “Raman correlation spectroscopy: A method for studying chemical composition and dynamics of disperse systems,” Phys. rev. E.57(3), R2523–R2526 (1998).
    [CrossRef]
  13. R. S. Mulliken, “Intensities of electronic transitions in molecular spectra VII. Conjugated polyenes and carotenoids,” J. Chem. Phys.7, 364–373 (1939).
    [CrossRef]
  14. S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999).
    [CrossRef]
  15. C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
    [CrossRef]
  16. T. Hellerer, A. Schiller, G. Jung, and A. Zumbusch, “Coherent anti-Stokes Raman scattering (CARS) correlation spectroscopy,” Chem. Phys. Chem.7, 630–633 (2002).
    [CrossRef]
  17. J. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: Probing dynamical processes with chemical selectivity,” J. Phys. Chem. A106, 8561–8568 (2002).
    [CrossRef]
  18. M. Nishida and E. R. Van Keuren, “Derivation of the optical autocorrelation function from Raman scattering of diffusing particles,” J. Mod. Opt.59(2), 102–105 (2012).
    [CrossRef]
  19. M. Nishida, “Raman correlation spectroscopy: A feasibility study of a new optical correlation technique and development of multi-component nanoparticles using the reprecipitation method,” Ph.D. Dissertation , Georgetown University, Washington, D.C., 2011.
  20. M. Minsky, “Memoir on inventing the confocal microscope,” Scanning10, 128138 (1988).
    [CrossRef]
  21. R. Webb, “Confocal optical microscopy,” Rep. Prog. Phys.59, 427–471 (1996).
    [CrossRef]
  22. D. W. Schaefer, “Dynamics of number fluctuations: motile macroorganisms,” Science180, 1293–1295 (1973).
    [CrossRef] [PubMed]
  23. S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe for molecular dynamics,” J. Chem. Phys.64(4), 1791–1803 (1976).
    [CrossRef]
  24. N. Thompson, “Topics in fluorescence spectroscopy, Volume I: Techniques,” Ed. Joseph R. Lakowicz, Plenum Press, New York (1991).
  25. T. J. Herbert and J. D. Acton, “Photon correlation spectroscopy of light scattered from microscopic regions,” Appl. Opt.18(5), 588–590(1979).
    [CrossRef] [PubMed]
  26. A. Barbara, T. López-Ríos, S. Dumont, F. Gay, and P. Quémerais, “A microscope spectrometer for light scattering investigations,” App. Opt.49(22), 4193–4201 (2010).
    [CrossRef]
  27. A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
    [CrossRef]
  28. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
    [CrossRef]
  29. A. Ashkin, “Forces of a singe-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  30. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987).
    [CrossRef] [PubMed]
  31. R. Bar-Ziv, A. Meller, T. Tlusty, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: Probing single particle dynamics at the nanoscale,” Phys. Rev. Lett.78(1), 154–157 (1997).
    [CrossRef]
  32. N. B. Viana, R. T. S. Freire, and O. N. Mesquita, “Dynamic light scattering from an optically trapped microsphere,” Phys. Rev. E65, 041921-1-11 (2002).
    [CrossRef]
  33. C. Hosokawa, H. Yoshikawa, and H. Masuhar, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408-1-7(2005).
    [CrossRef]
  34. M. J. Lang and S. M. Block, “Resource Letter: LBOT-1: Laser-based optical tweezers,” Am.J. Phys.71, 201–215, (2003).
    [CrossRef]

2012 (1)

M. Nishida and E. R. Van Keuren, “Derivation of the optical autocorrelation function from Raman scattering of diffusing particles,” J. Mod. Opt.59(2), 102–105 (2012).
[CrossRef]

2010 (2)

A. Barbara, T. López-Ríos, S. Dumont, F. Gay, and P. Quémerais, “A microscope spectrometer for light scattering investigations,” App. Opt.49(22), 4193–4201 (2010).
[CrossRef]

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

2005 (1)

C. Hosokawa, H. Yoshikawa, and H. Masuhar, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408-1-7(2005).
[CrossRef]

2003 (1)

M. J. Lang and S. M. Block, “Resource Letter: LBOT-1: Laser-based optical tweezers,” Am.J. Phys.71, 201–215, (2003).
[CrossRef]

2002 (4)

N. B. Viana, R. T. S. Freire, and O. N. Mesquita, “Dynamic light scattering from an optically trapped microsphere,” Phys. Rev. E65, 041921-1-11 (2002).
[CrossRef]

T. Hellerer, A. Schiller, G. Jung, and A. Zumbusch, “Coherent anti-Stokes Raman scattering (CARS) correlation spectroscopy,” Chem. Phys. Chem.7, 630–633 (2002).
[CrossRef]

J. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: Probing dynamical processes with chemical selectivity,” J. Phys. Chem. A106, 8561–8568 (2002).
[CrossRef]

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002).
[CrossRef]

2001 (1)

C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
[CrossRef]

1999 (1)

S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999).
[CrossRef]

1998 (1)

W. Schrof, J. F. Klinger, S. Rozouvan, and D. Horn, “Raman correlation spectroscopy: A method for studying chemical composition and dynamics of disperse systems,” Phys. rev. E.57(3), R2523–R2526 (1998).
[CrossRef]

1997 (1)

R. Bar-Ziv, A. Meller, T. Tlusty, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: Probing single particle dynamics at the nanoscale,” Phys. Rev. Lett.78(1), 154–157 (1997).
[CrossRef]

1996 (1)

R. Webb, “Confocal optical microscopy,” Rep. Prog. Phys.59, 427–471 (1996).
[CrossRef]

1995 (1)

R. Rigler, “Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology,” J. of. Biotechno.41, 177–186 (1995).
[CrossRef]

1993 (1)

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. J. Biophys.22, 169–175 (1993).
[CrossRef]

1992 (1)

A. Ashkin, “Forces of a singe-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

1988 (1)

M. Minsky, “Memoir on inventing the confocal microscope,” Scanning10, 128138 (1988).
[CrossRef]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987).
[CrossRef] [PubMed]

1979 (1)

1976 (1)

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe for molecular dynamics,” J. Chem. Phys.64(4), 1791–1803 (1976).
[CrossRef]

1973 (1)

D. W. Schaefer, “Dynamics of number fluctuations: motile macroorganisms,” Science180, 1293–1295 (1973).
[CrossRef] [PubMed]

1972 (1)

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

1964 (1)

H. Z. Cummins, N. Knable, and Y. Yeh, “Observation of diffusion broadening of Rayleigh light,” Phys. Rev. Lett.12(6), 150–153 (1964).
[CrossRef]

1943 (1)

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943).
[CrossRef]

1939 (1)

R. S. Mulliken, “Intensities of electronic transitions in molecular spectra VII. Conjugated polyenes and carotenoids,” J. Chem. Phys.7, 364–373 (1939).
[CrossRef]

1905 (1)

A. Einstein, “On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat,” Ann. d. Phys.17, 549–560 (1905).
[CrossRef]

1900 (1)

L. Bachelier, “Théorie de la spéculation,” Ann. sci. de l’ENS17(3), 21–86 (1900).

1888 (1)

L. Gouÿ, “Notes sur le mouvement Brownien,” J. de Phys.7(2), 561–563 (1888).

Acton, J. D.

Aragon, S. R.

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe for molecular dynamics,” J. Chem. Phys.64(4), 1791–1803 (1976).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a singe-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Bachelier, L.

L. Bachelier, “Théorie de la spéculation,” Ann. sci. de l’ENS17(3), 21–86 (1900).

Barbara, A.

A. Barbara, T. López-Ríos, S. Dumont, F. Gay, and P. Quémerais, “A microscope spectrometer for light scattering investigations,” App. Opt.49(22), 4193–4201 (2010).
[CrossRef]

Bar-Ziv, R.

R. Bar-Ziv, A. Meller, T. Tlusty, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: Probing single particle dynamics at the nanoscale,” Phys. Rev. Lett.78(1), 154–157 (1997).
[CrossRef]

Berne, B.

N. Pusey and B. Berne, Photon Correlation Spectroscopy and Velocimetry(Ed. by H. Z. Cummins and E.R. Pike, NATO advanced study institutes series: Physics, 1976).

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Ed. Wiley & Sons, 1975).

Block, S. M.

M. J. Lang and S. M. Block, “Resource Letter: LBOT-1: Laser-based optical tweezers,” Am.J. Phys.71, 201–215, (2003).
[CrossRef]

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002).
[CrossRef]

Brehm, G.

C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943).
[CrossRef]

Cheng, J.

J. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: Probing dynamical processes with chemical selectivity,” J. Phys. Chem. A106, 8561–8568 (2002).
[CrossRef]

Cummins, H. Z.

H. Z. Cummins, N. Knable, and Y. Yeh, “Observation of diffusion broadening of Rayleigh light,” Phys. Rev. Lett.12(6), 150–153 (1964).
[CrossRef]

Dinca, V.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

Dinescu, M.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

Dumont, S.

A. Barbara, T. López-Ríos, S. Dumont, F. Gay, and P. Quémerais, “A microscope spectrometer for light scattering investigations,” App. Opt.49(22), 4193–4201 (2010).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987).
[CrossRef] [PubMed]

Eggeling, C.

C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
[CrossRef]

Einstein, A.

A. Einstein, “On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat,” Ann. d. Phys.17, 549–560 (1905).
[CrossRef]

Elson, E.

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

Freire, R. T. S.

N. B. Viana, R. T. S. Freire, and O. N. Mesquita, “Dynamic light scattering from an optically trapped microsphere,” Phys. Rev. E65, 041921-1-11 (2002).
[CrossRef]

Gay, F.

A. Barbara, T. López-Ríos, S. Dumont, F. Gay, and P. Quémerais, “A microscope spectrometer for light scattering investigations,” App. Opt.49(22), 4193–4201 (2010).
[CrossRef]

Gouÿ, L.

L. Gouÿ, “Notes sur le mouvement Brownien,” J. de Phys.7(2), 561–563 (1888).

Hellerer, T.

T. Hellerer, A. Schiller, G. Jung, and A. Zumbusch, “Coherent anti-Stokes Raman scattering (CARS) correlation spectroscopy,” Chem. Phys. Chem.7, 630–633 (2002).
[CrossRef]

Herbert, T. J.

Herman, H.

S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999).
[CrossRef]

Horn, D.

W. Schrof, J. F. Klinger, S. Rozouvan, and D. Horn, “Raman correlation spectroscopy: A method for studying chemical composition and dynamics of disperse systems,” Phys. rev. E.57(3), R2523–R2526 (1998).
[CrossRef]

Hosokawa, C.

C. Hosokawa, H. Yoshikawa, and H. Masuhar, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408-1-7(2005).
[CrossRef]

Jung, G.

T. Hellerer, A. Schiller, G. Jung, and A. Zumbusch, “Coherent anti-Stokes Raman scattering (CARS) correlation spectroscopy,” Chem. Phys. Chem.7, 630–633 (2002).
[CrossRef]

Kask, P.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. J. Biophys.22, 169–175 (1993).
[CrossRef]

Klinger, J. F.

W. Schrof, J. F. Klinger, S. Rozouvan, and D. Horn, “Raman correlation spectroscopy: A method for studying chemical composition and dynamics of disperse systems,” Phys. rev. E.57(3), R2523–R2526 (1998).
[CrossRef]

Knable, N.

H. Z. Cummins, N. Knable, and Y. Yeh, “Observation of diffusion broadening of Rayleigh light,” Phys. Rev. Lett.12(6), 150–153 (1964).
[CrossRef]

Korte, J.

C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
[CrossRef]

Kovacs, E.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002).
[CrossRef]

Lang, M. J.

M. J. Lang and S. M. Block, “Resource Letter: LBOT-1: Laser-based optical tweezers,” Am.J. Phys.71, 201–215, (2003).
[CrossRef]

Lippert, T.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

López-Ríos, T.

A. Barbara, T. López-Ríos, S. Dumont, F. Gay, and P. Quémerais, “A microscope spectrometer for light scattering investigations,” App. Opt.49(22), 4193–4201 (2010).
[CrossRef]

Maddams, W. F.

S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999).
[CrossRef]

Magde, D.

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

Masuhar, H.

C. Hosokawa, H. Yoshikawa, and H. Masuhar, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408-1-7(2005).
[CrossRef]

Meller, A.

R. Bar-Ziv, A. Meller, T. Tlusty, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: Probing single particle dynamics at the nanoscale,” Phys. Rev. Lett.78(1), 154–157 (1997).
[CrossRef]

Mesquita, O. N.

N. B. Viana, R. T. S. Freire, and O. N. Mesquita, “Dynamic light scattering from an optically trapped microsphere,” Phys. Rev. E65, 041921-1-11 (2002).
[CrossRef]

Mets, Ü.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. J. Biophys.22, 169–175 (1993).
[CrossRef]

Mi. Dixon, N.

S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999).
[CrossRef]

Minsky, M.

M. Minsky, “Memoir on inventing the confocal microscope,” Scanning10, 128138 (1988).
[CrossRef]

Moldovan, A.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

Mulliken, R. S.

R. S. Mulliken, “Intensities of electronic transitions in molecular spectra VII. Conjugated polyenes and carotenoids,” J. Chem. Phys.7, 364–373 (1939).
[CrossRef]

Nishida, M.

M. Nishida and E. R. Van Keuren, “Derivation of the optical autocorrelation function from Raman scattering of diffusing particles,” J. Mod. Opt.59(2), 102–105 (2012).
[CrossRef]

M. Nishida, “Raman correlation spectroscopy: A feasibility study of a new optical correlation technique and development of multi-component nanoparticles using the reprecipitation method,” Ph.D. Dissertation , Georgetown University, Washington, D.C., 2011.

Palla-Papavlu, A.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

Paraico, I.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

Parker, S. F.

S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999).
[CrossRef]

Pecora, R.

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe for molecular dynamics,” J. Chem. Phys.64(4), 1791–1803 (1976).
[CrossRef]

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Ed. Wiley & Sons, 1975).

Potma, E. O.

J. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: Probing dynamical processes with chemical selectivity,” J. Phys. Chem. A106, 8561–8568 (2002).
[CrossRef]

Pusey, N.

N. Pusey and B. Berne, Photon Correlation Spectroscopy and Velocimetry(Ed. by H. Z. Cummins and E.R. Pike, NATO advanced study institutes series: Physics, 1976).

Quémerais, P.

A. Barbara, T. López-Ríos, S. Dumont, F. Gay, and P. Quémerais, “A microscope spectrometer for light scattering investigations,” App. Opt.49(22), 4193–4201 (2010).
[CrossRef]

Rigler, R.

R. Rigler, “Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology,” J. of. Biotechno.41, 177–186 (1995).
[CrossRef]

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. J. Biophys.22, 169–175 (1993).
[CrossRef]

Rozouvan, S.

W. Schrof, J. F. Klinger, S. Rozouvan, and D. Horn, “Raman correlation spectroscopy: A method for studying chemical composition and dynamics of disperse systems,” Phys. rev. E.57(3), R2523–R2526 (1998).
[CrossRef]

Safran, S. A.

R. Bar-Ziv, A. Meller, T. Tlusty, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: Probing single particle dynamics at the nanoscale,” Phys. Rev. Lett.78(1), 154–157 (1997).
[CrossRef]

Schaefer, D. W.

D. W. Schaefer, “Dynamics of number fluctuations: motile macroorganisms,” Science180, 1293–1295 (1973).
[CrossRef] [PubMed]

Schaffer, J.

C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
[CrossRef]

Schiller, A.

T. Hellerer, A. Schiller, G. Jung, and A. Zumbusch, “Coherent anti-Stokes Raman scattering (CARS) correlation spectroscopy,” Chem. Phys. Chem.7, 630–633 (2002).
[CrossRef]

Schneider, C. W.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

Schneider, S.

C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
[CrossRef]

Schrof, W.

C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
[CrossRef]

W. Schrof, J. F. Klinger, S. Rozouvan, and D. Horn, “Raman correlation spectroscopy: A method for studying chemical composition and dynamics of disperse systems,” Phys. rev. E.57(3), R2523–R2526 (1998).
[CrossRef]

Seidel, C. A. M.

C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
[CrossRef]

Shaw-steward, J.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

Stavans, J.

R. Bar-Ziv, A. Meller, T. Tlusty, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: Probing single particle dynamics at the nanoscale,” Phys. Rev. Lett.78(1), 154–157 (1997).
[CrossRef]

Tavender, S. M.

S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999).
[CrossRef]

Thompson, N.

N. Thompson, “Topics in fluorescence spectroscopy, Volume I: Techniques,” Ed. Joseph R. Lakowicz, Plenum Press, New York (1991).

Tlusty, T.

R. Bar-Ziv, A. Meller, T. Tlusty, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: Probing single particle dynamics at the nanoscale,” Phys. Rev. Lett.78(1), 154–157 (1997).
[CrossRef]

Van Keuren, E. R.

M. Nishida and E. R. Van Keuren, “Derivation of the optical autocorrelation function from Raman scattering of diffusing particles,” J. Mod. Opt.59(2), 102–105 (2012).
[CrossRef]

Viana, N. B.

N. B. Viana, R. T. S. Freire, and O. N. Mesquita, “Dynamic light scattering from an optically trapped microsphere,” Phys. Rev. E65, 041921-1-11 (2002).
[CrossRef]

Webb, R.

R. Webb, “Confocal optical microscopy,” Rep. Prog. Phys.59, 427–471 (1996).
[CrossRef]

Webb, W.W.

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

Widengren, J.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. J. Biophys.22, 169–175 (1993).
[CrossRef]

Williams, K. P. J.

S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999).
[CrossRef]

Xie, S. X.

J. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: Probing dynamical processes with chemical selectivity,” J. Phys. Chem. A106, 8561–8568 (2002).
[CrossRef]

Yeh, Y.

H. Z. Cummins, N. Knable, and Y. Yeh, “Observation of diffusion broadening of Rayleigh light,” Phys. Rev. Lett.12(6), 150–153 (1964).
[CrossRef]

Yoshikawa, H.

C. Hosokawa, H. Yoshikawa, and H. Masuhar, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408-1-7(2005).
[CrossRef]

Zumbusch, A.

T. Hellerer, A. Schiller, G. Jung, and A. Zumbusch, “Coherent anti-Stokes Raman scattering (CARS) correlation spectroscopy,” Chem. Phys. Chem.7, 630–633 (2002).
[CrossRef]

Am.J. Phys. (1)

M. J. Lang and S. M. Block, “Resource Letter: LBOT-1: Laser-based optical tweezers,” Am.J. Phys.71, 201–215, (2003).
[CrossRef]

Ann. d. Phys. (1)

A. Einstein, “On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat,” Ann. d. Phys.17, 549–560 (1905).
[CrossRef]

Ann. sci. de l’ENS (1)

L. Bachelier, “Théorie de la spéculation,” Ann. sci. de l’ENS17(3), 21–86 (1900).

App. Opt. (1)

A. Barbara, T. López-Ríos, S. Dumont, F. Gay, and P. Quémerais, “A microscope spectrometer for light scattering investigations,” App. Opt.49(22), 4193–4201 (2010).
[CrossRef]

App. Spect. (1)

S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999).
[CrossRef]

Appl. Opt. (1)

Biophys. J. (1)

A. Ashkin, “Forces of a singe-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

Chem. Phys. Chem. (1)

T. Hellerer, A. Schiller, G. Jung, and A. Zumbusch, “Coherent anti-Stokes Raman scattering (CARS) correlation spectroscopy,” Chem. Phys. Chem.7, 630–633 (2002).
[CrossRef]

Eur. J. Biophys. (1)

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. J. Biophys.22, 169–175 (1993).
[CrossRef]

J. Appl. Phys. (1)

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010).
[CrossRef]

J. Chem. Phys. (2)

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe for molecular dynamics,” J. Chem. Phys.64(4), 1791–1803 (1976).
[CrossRef]

R. S. Mulliken, “Intensities of electronic transitions in molecular spectra VII. Conjugated polyenes and carotenoids,” J. Chem. Phys.7, 364–373 (1939).
[CrossRef]

J. de Phys. (1)

L. Gouÿ, “Notes sur le mouvement Brownien,” J. de Phys.7(2), 561–563 (1888).

J. Mod. Opt. (1)

M. Nishida and E. R. Van Keuren, “Derivation of the optical autocorrelation function from Raman scattering of diffusing particles,” J. Mod. Opt.59(2), 102–105 (2012).
[CrossRef]

J. of Phys. Chem. A (1)

C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001).
[CrossRef]

J. of. Biotechno. (1)

R. Rigler, “Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology,” J. of. Biotechno.41, 177–186 (1995).
[CrossRef]

J. Phys. Chem. A (1)

J. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: Probing dynamical processes with chemical selectivity,” J. Phys. Chem. A106, 8561–8568 (2002).
[CrossRef]

Phys. Rev. E (2)

N. B. Viana, R. T. S. Freire, and O. N. Mesquita, “Dynamic light scattering from an optically trapped microsphere,” Phys. Rev. E65, 041921-1-11 (2002).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhar, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408-1-7(2005).
[CrossRef]

Phys. rev. E. (1)

W. Schrof, J. F. Klinger, S. Rozouvan, and D. Horn, “Raman correlation spectroscopy: A method for studying chemical composition and dynamics of disperse systems,” Phys. rev. E.57(3), R2523–R2526 (1998).
[CrossRef]

Phys. Rev. Lett. (4)

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

H. Z. Cummins, N. Knable, and Y. Yeh, “Observation of diffusion broadening of Rayleigh light,” Phys. Rev. Lett.12(6), 150–153 (1964).
[CrossRef]

R. Bar-Ziv, A. Meller, T. Tlusty, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: Probing single particle dynamics at the nanoscale,” Phys. Rev. Lett.78(1), 154–157 (1997).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Rep. Prog. Phys. (2)

R. Webb, “Confocal optical microscopy,” Rep. Prog. Phys.59, 427–471 (1996).
[CrossRef]

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943).
[CrossRef]

Scanning (1)

M. Minsky, “Memoir on inventing the confocal microscope,” Scanning10, 128138 (1988).
[CrossRef]

Science (2)

D. W. Schaefer, “Dynamics of number fluctuations: motile macroorganisms,” Science180, 1293–1295 (1973).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987).
[CrossRef] [PubMed]

Other (4)

N. Thompson, “Topics in fluorescence spectroscopy, Volume I: Techniques,” Ed. Joseph R. Lakowicz, Plenum Press, New York (1991).

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Ed. Wiley & Sons, 1975).

N. Pusey and B. Berne, Photon Correlation Spectroscopy and Velocimetry(Ed. by H. Z. Cummins and E.R. Pike, NATO advanced study institutes series: Physics, 1976).

M. Nishida, “Raman correlation spectroscopy: A feasibility study of a new optical correlation technique and development of multi-component nanoparticles using the reprecipitation method,” Ph.D. Dissertation , Georgetown University, Washington, D.C., 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the experimental set-up. (a) The sample is illuminated by a laser of wavelength λ0=532 nm through a high numerical aperture objective. The back-scattered light is collected by the same objective and is spatially filtered by a pinhole placed in the confocal plane, before being sent to the entrance of the Raman spectrometer. For Raman spectra acquisition and RCS measurements, a Notch filter is placed after the pinhole to ensure the rejection of the elastic light scattering. The light entering the spectrometer is diffracted and the diffracted beam is either (b) sent to a CCD camera for the Raman spectra acquisition or (c) sent through the exit slits whose aperture selects the wavelength λ and the spectral width of the outgoing beam. The latter beam is focused on an APD coupled with a photon correlator which measures the intensity Iλ (t) of the photons of wavelength λ as a function of time. A software calculates the ACF of this intensity.

Fig. 2
Fig. 2

(a–c) ACFs of the Raman intensities located at 3005 cm−1 scattered by PS particles of different sizes: d=200 nm (a), d=500 nm (b) and d=750 nm (c). (d) ACF of the Raman intensity scattered by the water molecules and located at 3400 cm−1. Dots are the experimental data and full lines the calculated ones using Eq. (1). The characteristic times of the ACFs are τD=20 ms for d=200 nm (a), τD=45 ms for d=500 nm and τD=80 ms for d=750 nm. (e) Plot of the characteristic times as a function of the diameter of the particle. The error bars come from the different values obtained from measurements on the same bead sizes. The slope of the line expresses as a = 3 π η r 0 2 / ( 4 k B T ) = 1.036 × 10 4 s . nm 1 and gives access to the radius of the confocal volume r0 = 445 ± 50 nm at T = 24°C.

Fig. 3
Fig. 3

(a–e) ACFs of the Raman intensity scattered by PS particles of size d=1000 nm and located at 990 cm−1 (a), 1175 cm−1 (b), 1570 cm−1 (c), 2865 cm−1 (d) and 3005 cm−1 (e) 3005 cm−1. Dots are the experimental data and full lines the calculated ones using Eq. (1). The characteristic time is the same for all the measurements and equals τD = 10 ms. (f) Raman spectra of the solution integrated over 30 s.

Fig. 4
Fig. 4

(a) Experimental ACF (light blue dots) derived from the Raman intensity scattered by a PS particle of size d=1000 nm and located at 3005 cm−1. The theoretical ACF (light blue line) is calculated within the model of a trapped single-particle, using Eq. (3) composed of the sum of two exponentials represented by the two dotted light blue lines. Their characteristic times are τx=7 ms and τz = 6τx and their amplitudes are Ax =0.01 and Az =0.003. The ACF expected for the same particle but animated by a free Brownian motion is shown in dark blue line for comparison. (b) Experimental ACF derived from the elastic scattering from PS particles of size d=1000 nm, at strong (light blue dots) and low (dark blue dots) incident power of the laser. The experiments are in agreement with the model of a trapped single-particle (light blue line) in the case of the strong power illumination and with that of a free Brownian particle (dark blue line) in the case of the low power illumination with respective characteristic times of τx=7 ms and τD=100 ms. (c) and (d) Same plot as (a) and (b) respectively with a logarithmic y-axis scale to highlight the different time-decay laws of the ACFs in the trapped and free particle configurations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G ( t ) = I ( τ ) I ( τ + t ) I ( τ ) 2 = 1 + c 2 N 1 ( 1 + t / τ D ) ( 1 + t / ( w 2 τ D ) ) 0.5 ,
G c ( t ) = 1 + β e 2 q 2 D t ,
G ( t ) = 1 + A x e t / τ x + A z e t / τ z ,

Metrics