Abstract

The intrinsic linewidth and angular dispersion of Surface Plasmon Polariton resonance of a micrometric metal mesh have been measured with a collimated mid-infrared beam, provided by an External Cavity tunable Quantum Cascade Laser. We show that the use of a collimated beam yields an observed resonance linewidth γ = 12 cm−1 at the resonance frequency ν0 = 1658 cm−1, better by an order of magnitude than with a non-collimated beam. The extremely narrow plasmon resonance attained by our mesh is then exploited to reconstruct, by varying the QCL angle of incidence θ, the angular intensity distribution f(θ) of a globar at the focal plane of a conventional imaging setup. We thus show that f(θ) is better reproduced by a Gaussian distribution than by a uniform one, in agreement with ray-tracing simulation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Rodrigo, L. Martn-Moreno, A. Yu. Nikitin, A. V. Kats, I. S. Spevak, and F. J. Garca-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett.34(1), 4–6 (2009).
    [CrossRef]
  2. F. de Len-Prez, G. Brucoli, F. J. Garca-Vidal, and L. Martn-Moreno, “Theory on the scattering of light and surface plasmon polariton by arrays of holes and dimples in a metal film,” New. J. Phys.10, 105017 (2008)
    [CrossRef]
  3. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
    [CrossRef]
  4. J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
    [CrossRef]
  5. E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express17(17) 14586 (2009).
    [CrossRef] [PubMed]
  6. D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from subwavelength gratings,” Appl. Phys. Lett.90, 191102 (2007).
    [CrossRef]
  7. D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolski, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96, 201112 (2010).
    [CrossRef]
  8. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72, 064401 (2009).
    [CrossRef]
  9. T. Ganz, H. G. von Ribbeck, D. W. van der Weide, and F. Keilmann, “Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials,” New J. Phys.10, 123007 (2008).
    [CrossRef]
  10. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
    [CrossRef] [PubMed]
  11. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5, 8167–8174 (2011)
    [CrossRef] [PubMed]
  12. K. R. Rodriguez, H. Tian, J. M. Heer, and J. V. Coe, “Extraordinary Infrared transmission resonances of metal microarrays for sensing nanocoating thickness,” J. Phys. Chem. C111, 12111, (2007).
    [CrossRef]
  13. O. Limaj, S. Lupi, F. Mattioli, R. Leoni, and M. Ortolani, “Mid-Infrared surface plasmon sensor based on a substrateless metal mesh,” Appl. Phys. Lett.98, 091902 (2011).
    [CrossRef]
  14. J. M. Heer and J. V. Coe, “3D-FDTD modeling of angular spread for the extraordinary transmission spectra of metal films with arrays of subwavelength holes,” Plasmonics7, 71–75 (2012).
    [CrossRef]
  15. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
    [CrossRef] [PubMed]
  16. M. A. Malone, K. E. Cilwa, M. McCormack, and J. V. Coe, “Modifying an infrared microscope to characterize propagating surface plasmon polariton-mediated resonances,” J. Phys. Chem.115, 12250–12254 (2011).
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
    [CrossRef]
  18. H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779 (1998).
    [CrossRef]
  19. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004).
    [CrossRef] [PubMed]
  20. M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun.166, 151 (1999).
    [CrossRef]
  21. A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
    [CrossRef] [PubMed]
  22. T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating,” Appl. Phys. Lett.94, 201109 (2009).
    [CrossRef]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)
  24. J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011).
    [CrossRef] [PubMed]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  26. O. Svelto, Principles of Lasers, 4th Ed. (Plenum, 1998).
    [CrossRef]
  27. F. Cerrina and M. Sanchez del Rio, “Ray tracing of X-Ray optical systems,” in Handbook of Optics3rd ed., (Mc Graw Hill, 2009).

2012 (1)

J. M. Heer and J. V. Coe, “3D-FDTD modeling of angular spread for the extraordinary transmission spectra of metal films with arrays of subwavelength holes,” Plasmonics7, 71–75 (2012).
[CrossRef]

2011 (6)

O. Limaj, S. Lupi, F. Mattioli, R. Leoni, and M. Ortolani, “Mid-Infrared surface plasmon sensor based on a substrateless metal mesh,” Appl. Phys. Lett.98, 091902 (2011).
[CrossRef]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
[CrossRef] [PubMed]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5, 8167–8174 (2011)
[CrossRef] [PubMed]

M. A. Malone, K. E. Cilwa, M. McCormack, and J. V. Coe, “Modifying an infrared microscope to characterize propagating surface plasmon polariton-mediated resonances,” J. Phys. Chem.115, 12250–12254 (2011).

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011).
[CrossRef] [PubMed]

2010 (2)

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolski, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96, 201112 (2010).
[CrossRef]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
[CrossRef]

2009 (4)

S. G. Rodrigo, L. Martn-Moreno, A. Yu. Nikitin, A. V. Kats, I. S. Spevak, and F. J. Garca-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett.34(1), 4–6 (2009).
[CrossRef]

E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express17(17) 14586 (2009).
[CrossRef] [PubMed]

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72, 064401 (2009).
[CrossRef]

T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating,” Appl. Phys. Lett.94, 201109 (2009).
[CrossRef]

2008 (3)

F. de Len-Prez, G. Brucoli, F. J. Garca-Vidal, and L. Martn-Moreno, “Theory on the scattering of light and surface plasmon polariton by arrays of holes and dimples in a metal film,” New. J. Phys.10, 105017 (2008)
[CrossRef]

T. Ganz, H. G. von Ribbeck, D. W. van der Weide, and F. Keilmann, “Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials,” New J. Phys.10, 123007 (2008).
[CrossRef]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef] [PubMed]

2007 (3)

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from subwavelength gratings,” Appl. Phys. Lett.90, 191102 (2007).
[CrossRef]

K. R. Rodriguez, H. Tian, J. M. Heer, and J. V. Coe, “Extraordinary Infrared transmission resonances of metal microarrays for sensing nanocoating thickness,” J. Phys. Chem. C111, 12111, (2007).
[CrossRef]

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
[CrossRef]

2004 (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004).
[CrossRef] [PubMed]

1999 (1)

M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun.166, 151 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779 (1998).
[CrossRef]

Adams, D. C.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolski, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96, 201112 (2010).
[CrossRef]

T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating,” Appl. Phys. Lett.94, 201109 (2009).
[CrossRef]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
[CrossRef] [PubMed]

Aixpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef] [PubMed]

Alp, Artar

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
[CrossRef]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
[CrossRef] [PubMed]

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
[CrossRef]

Atwater, H. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5, 8167–8174 (2011)
[CrossRef] [PubMed]

Aydin, K.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5, 8167–8174 (2011)
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004).
[CrossRef] [PubMed]

M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun.166, 151 (1999).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Brucoli, G.

F. de Len-Prez, G. Brucoli, F. J. Garca-Vidal, and L. Martn-Moreno, “Theory on the scattering of light and surface plasmon polariton by arrays of holes and dimples in a metal film,” New. J. Phys.10, 105017 (2008)
[CrossRef]

Cederberg, J. G.

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from subwavelength gratings,” Appl. Phys. Lett.90, 191102 (2007).
[CrossRef]

Cerrina, F.

F. Cerrina and M. Sanchez del Rio, “Ray tracing of X-Ray optical systems,” in Handbook of Optics3rd ed., (Mc Graw Hill, 2009).

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Cilwa, K.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
[CrossRef]

Cilwa, K. E.

M. A. Malone, K. E. Cilwa, M. McCormack, and J. V. Coe, “Modifying an infrared microscope to characterize propagating surface plasmon polariton-mediated resonances,” J. Phys. Chem.115, 12250–12254 (2011).

Coe, J. V.

J. M. Heer and J. V. Coe, “3D-FDTD modeling of angular spread for the extraordinary transmission spectra of metal films with arrays of subwavelength holes,” Plasmonics7, 71–75 (2012).
[CrossRef]

M. A. Malone, K. E. Cilwa, M. McCormack, and J. V. Coe, “Modifying an infrared microscope to characterize propagating surface plasmon polariton-mediated resonances,” J. Phys. Chem.115, 12250–12254 (2011).

K. R. Rodriguez, H. Tian, J. M. Heer, and J. V. Coe, “Extraordinary Infrared transmission resonances of metal microarrays for sensing nanocoating thickness,” J. Phys. Chem. C111, 12111, (2007).
[CrossRef]

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
[CrossRef]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
[CrossRef]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef] [PubMed]

de Len-Prez, F.

F. de Len-Prez, G. Brucoli, F. J. Garca-Vidal, and L. Martn-Moreno, “Theory on the scattering of light and surface plasmon polariton by arrays of holes and dimples in a metal film,” New. J. Phys.10, 105017 (2008)
[CrossRef]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004).
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779 (1998).
[CrossRef]

Etou, J.

J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011).
[CrossRef] [PubMed]

Furukawa, D.

J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011).
[CrossRef] [PubMed]

Ganz, T.

T. Ganz, H. G. von Ribbeck, D. W. van der Weide, and F. Keilmann, “Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials,” New J. Phys.10, 123007 (2008).
[CrossRef]

Garca-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef] [PubMed]

Garca-Vidal, F. J.

S. G. Rodrigo, L. Martn-Moreno, A. Yu. Nikitin, A. V. Kats, I. S. Spevak, and F. J. Garca-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett.34(1), 4–6 (2009).
[CrossRef]

F. de Len-Prez, G. Brucoli, F. J. Garca-Vidal, and L. Martn-Moreno, “Theory on the scattering of light and surface plasmon polariton by arrays of holes and dimples in a metal film,” New. J. Phys.10, 105017 (2008)
[CrossRef]

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779 (1998).
[CrossRef]

Heer, J.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
[CrossRef]

Heer, J. M.

J. M. Heer and J. V. Coe, “3D-FDTD modeling of angular spread for the extraordinary transmission spectra of metal films with arrays of subwavelength holes,” Plasmonics7, 71–75 (2012).
[CrossRef]

K. R. Rodriguez, H. Tian, J. M. Heer, and J. V. Coe, “Extraordinary Infrared transmission resonances of metal microarrays for sensing nanocoating thickness,” J. Phys. Chem. C111, 12111, (2007).
[CrossRef]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
[CrossRef]

Ino, D.

J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011).
[CrossRef] [PubMed]

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
[CrossRef]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef] [PubMed]

Kats, A. V.

Keilmann, F.

T. Ganz, H. G. von Ribbeck, D. W. van der Weide, and F. Keilmann, “Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials,” New J. Phys.10, 123007 (2008).
[CrossRef]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5, 8167–8174 (2011)
[CrossRef] [PubMed]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
[CrossRef] [PubMed]

Kuipers, L.

Leoni, R.

O. Limaj, S. Lupi, F. Mattioli, R. Leoni, and M. Ortolani, “Mid-Infrared surface plasmon sensor based on a substrateless metal mesh,” Appl. Phys. Lett.98, 091902 (2011).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779 (1998).
[CrossRef]

Limaj, O.

O. Limaj, S. Lupi, F. Mattioli, R. Leoni, and M. Ortolani, “Mid-Infrared surface plasmon sensor based on a substrateless metal mesh,” Appl. Phys. Lett.98, 091902 (2011).
[CrossRef]

Lupi, S.

O. Limaj, S. Lupi, F. Mattioli, R. Leoni, and M. Ortolani, “Mid-Infrared surface plasmon sensor based on a substrateless metal mesh,” Appl. Phys. Lett.98, 091902 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

Malone, M. A.

M. A. Malone, K. E. Cilwa, M. McCormack, and J. V. Coe, “Modifying an infrared microscope to characterize propagating surface plasmon polariton-mediated resonances,” J. Phys. Chem.115, 12250–12254 (2011).

Martn-Moreno, L.

S. G. Rodrigo, L. Martn-Moreno, A. Yu. Nikitin, A. V. Kats, I. S. Spevak, and F. J. Garca-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett.34(1), 4–6 (2009).
[CrossRef]

F. de Len-Prez, G. Brucoli, F. J. Garca-Vidal, and L. Martn-Moreno, “Theory on the scattering of light and surface plasmon polariton by arrays of holes and dimples in a metal film,” New. J. Phys.10, 105017 (2008)
[CrossRef]

Matsumoto, Y.

J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011).
[CrossRef] [PubMed]

Mattioli, F.

O. Limaj, S. Lupi, F. Mattioli, R. Leoni, and M. Ortolani, “Mid-Infrared surface plasmon sensor based on a substrateless metal mesh,” Appl. Phys. Lett.98, 091902 (2011).
[CrossRef]

McCormack, M.

M. A. Malone, K. E. Cilwa, M. McCormack, and J. V. Coe, “Modifying an infrared microscope to characterize propagating surface plasmon polariton-mediated resonances,” J. Phys. Chem.115, 12250–12254 (2011).

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004).
[CrossRef] [PubMed]

Nakai, I.F.

J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011).
[CrossRef] [PubMed]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef] [PubMed]

Nikitin, A. Yu.

Ortolani, M.

O. Limaj, S. Lupi, F. Mattioli, R. Leoni, and M. Ortolani, “Mid-Infrared surface plasmon sensor based on a substrateless metal mesh,” Appl. Phys. Lett.98, 091902 (2011).
[CrossRef]

Passmore, B.

T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating,” Appl. Phys. Lett.94, 201109 (2009).
[CrossRef]

Podolski, V. A.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolski, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96, 201112 (2010).
[CrossRef]

Polman, A.

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5, 8167–8174 (2011)
[CrossRef] [PubMed]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef] [PubMed]

Ribaudo, T.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolski, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96, 201112 (2010).
[CrossRef]

T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating,” Appl. Phys. Lett.94, 201109 (2009).
[CrossRef]

Rodrigo, S. G.

Rodriguez, K. R.

K. R. Rodriguez, H. Tian, J. M. Heer, and J. V. Coe, “Extraordinary Infrared transmission resonances of metal microarrays for sensing nanocoating thickness,” J. Phys. Chem. C111, 12111, (2007).
[CrossRef]

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
[CrossRef]

Salt, M. G.

M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun.166, 151 (1999).
[CrossRef]

Sanchez del Rio, M.

F. Cerrina and M. Sanchez del Rio, “Ray tracing of X-Ray optical systems,” in Handbook of Optics3rd ed., (Mc Graw Hill, 2009).

Shaner, E. A.

T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating,” Appl. Phys. Lett.94, 201109 (2009).
[CrossRef]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from subwavelength gratings,” Appl. Phys. Lett.90, 191102 (2007).
[CrossRef]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
[CrossRef] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Spevak, I. S.

Svelto, O.

O. Svelto, Principles of Lasers, 4th Ed. (Plenum, 1998).
[CrossRef]

Teeters-Kennedy, S.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Thio, Tineke

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779 (1998).
[CrossRef]

Thongrattanasiri, S.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolski, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96, 201112 (2010).
[CrossRef]

Tian, H.

K. R. Rodriguez, H. Tian, J. M. Heer, and J. V. Coe, “Extraordinary Infrared transmission resonances of metal microarrays for sensing nanocoating thickness,” J. Phys. Chem. C111, 12111, (2007).
[CrossRef]

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
[CrossRef]

van der Weide, D. W.

T. Ganz, H. G. von Ribbeck, D. W. van der Weide, and F. Keilmann, “Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials,” New J. Phys.10, 123007 (2008).
[CrossRef]

Verhagen, E.

von Ribbeck, H. G.

T. Ganz, H. G. von Ribbeck, D. W. van der Weide, and F. Keilmann, “Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials,” New J. Phys.10, 123007 (2008).
[CrossRef]

Wasserman, D.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolski, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96, 201112 (2010).
[CrossRef]

T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating,” Appl. Phys. Lett.94, 201109 (2009).
[CrossRef]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from subwavelength gratings,” Appl. Phys. Lett.90, 191102 (2007).
[CrossRef]

Watanabe, K.

J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011).
[CrossRef] [PubMed]

Weiner, J.

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72, 064401 (2009).
[CrossRef]

Williams, S. M.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
[CrossRef] [PubMed]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
[CrossRef] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
[CrossRef]

ACS Nano (1)

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5, 8167–8174 (2011)
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

O. Limaj, S. Lupi, F. Mattioli, R. Leoni, and M. Ortolani, “Mid-Infrared surface plasmon sensor based on a substrateless metal mesh,” Appl. Phys. Lett.98, 091902 (2011).
[CrossRef]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from subwavelength gratings,” Appl. Phys. Lett.90, 191102 (2007).
[CrossRef]

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolski, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96, 201112 (2010).
[CrossRef]

T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating,” Appl. Phys. Lett.94, 201109 (2009).
[CrossRef]

J. Phys. Chem. (1)

M. A. Malone, K. E. Cilwa, M. McCormack, and J. V. Coe, “Modifying an infrared microscope to characterize propagating surface plasmon polariton-mediated resonances,” J. Phys. Chem.115, 12250–12254 (2011).

J. Phys. Chem. C (2)

K. R. Rodriguez, H. Tian, J. M. Heer, and J. V. Coe, “Extraordinary Infrared transmission resonances of metal microarrays for sensing nanocoating thickness,” J. Phys. Chem. C111, 12111, (2007).
[CrossRef]

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007).
[CrossRef]

Nano Lett. (1)

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010).
[CrossRef]

Nat. Mater. (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

New J. Phys. (1)

T. Ganz, H. G. von Ribbeck, D. W. van der Weide, and F. Keilmann, “Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials,” New J. Phys.10, 123007 (2008).
[CrossRef]

New. J. Phys. (1)

F. de Len-Prez, G. Brucoli, F. J. Garca-Vidal, and L. Martn-Moreno, “Theory on the scattering of light and surface plasmon polariton by arrays of holes and dimples in a metal film,” New. J. Phys.10, 105017 (2008)
[CrossRef]

Opt. Commun. (1)

M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun.166, 151 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (1)

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004).
[CrossRef] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef] [PubMed]

Plasmonics (1)

J. M. Heer and J. V. Coe, “3D-FDTD modeling of angular spread for the extraordinary transmission spectra of metal films with arrays of subwavelength holes,” Plasmonics7, 71–75 (2012).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72, 064401 (2009).
[CrossRef]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

O. Svelto, Principles of Lasers, 4th Ed. (Plenum, 1998).
[CrossRef]

F. Cerrina and M. Sanchez del Rio, “Ray tracing of X-Ray optical systems,” in Handbook of Optics3rd ed., (Mc Graw Hill, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a): SEM image of the 2D plasmonic mesh. b): Optical layout for transmission measurements with the tunable Quantum Cascade Laser source (QCL), the mesh (M), the MCT detector (D), and the attenuator, implemented by a polarizer of KRS5. The polarization direction of the laser beam (P) and the variable angle of incidence θ are also indicated. c): Optical scheme of the FTIR interferometer with the globar source, the diaphragm d, the variable iris, and the nitrogen-cooled MCT detector. The grey boxes represent the optics of the interferometer.

Fig. 2
Fig. 2

a): Transmittance spectra of the mesh illuminated by the QCL, for different angles of incidence θ; the arrows indicate the peak positions for θ = 00 (red arrow) and θ = 1.50 (yellow arrows); b): resonance at θ = 0 (dots) with its fit to Eq. (2) (solid line); c): angular dispersion of the SPP modes in a). The dashed lines are guides to the eye.

Fig. 3
Fig. 3

a): Transmittance of the mesh measured with a FTIR interferometer, for different values of the NA, from 0.1 to 0.01; b) and d): Spectra reconstructed from the variable-angle QCL data according to Eq. (3) and using a uniform (b) and Gaussian (d) intensity distribution (see insets). c): Ray-tracing simulation of the mesh transmittance for different NA. The insets show the f(θ) used for the reconstruction of the corresponding spectra.

Fig. 4
Fig. 4

a): Transmittance of the metal mesh measured with the FTIR setup for NA = 0.01 (blue line) and 0.1 (red line) and compared with TQCL(θ = 0) (dashed). A comparable slope (straight lines) can be achieved only for NA = 0.01; b): average slope of the FTIR and QCL data at resonance vs. θmax.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν ( θ ) = i sin θ L ( n eff 2 sin 2 θ ) ± i 2 sin 2 θ + ( i 2 + j 2 ) ( n eff 2 sin 2 θ ) L ( n eff 2 sin 2 θ )
T ( ν ) = T a + A ( ν ν 0 + γ q ) 2 γ 2 + ( ν ν 0 ) 2
T F R I T ( θ max , ν ) = θ max θ max T Q C L ( θ , ν ) f ( θ ) d θ

Metrics