Abstract

In this paper, a heralded single photon source (HSPS) at 1.5 μm with two independent orthogonally polarized outputs is realized based on a piece of polarization maintaining dispersion shifted fiber (PM-DSF). The HSPS is based on two scalar spontaneous four wave mixing (SFWM) processes along the two fiber polarization axes, while two vector SFWM processes are suppressed due to the high birefringence in the PM-DSF. The preparation efficiencies of the two independent outputs are about 73.7% and 69.1%, respectively, under a second-order correlation function g(2)(0) of 0.059. The indistinguishability between the two independent heralded single photons is demonstrated by Hong-Ou-Mandel (HOM) interference with a visibility of 78.9%, showing its great potential in quantum optics experiments and applications of quantum information.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
    [CrossRef]
  2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
    [CrossRef] [PubMed]
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett.96(1), 010401 (2006).
    [CrossRef] [PubMed]
  4. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
    [CrossRef]
  5. O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett.30(12), 1539–1541 (2005).
    [CrossRef] [PubMed]
  6. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun.246(4-6), 545–550 (2005).
    [CrossRef]
  7. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express16(13), 9966–9977 (2008).
    [CrossRef] [PubMed]
  8. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
    [CrossRef]
  9. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14(7), 983–985 (2002).
    [CrossRef]
  10. H. Takesue and K. Inoue, “1.5- µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13(20), 7832–7839 (2005).
    [CrossRef] [PubMed]
  11. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A78(1), 013844 (2008).
    [CrossRef]
  12. Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Express34, 2706–2708 (2009).
  13. Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm,” Phys. Rev. A375, 2274 (2011).
  14. P. X. Wang, Q. Zhou, W. Zhang, Y. D. Huang, and J. D. Peng, “High-quality fiber-based heralded single-photon source at 1.5 μm,” Chin. Phys. Lett.29(5), 054215 (2012).
    [CrossRef]
  15. W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D59(2), 309–316 (2010).
    [CrossRef]
  16. H. Takesue, “1.5µm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett.90(20), 204101 (2007).
    [CrossRef]
  17. X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Observation of quantum interference between a single-photon state and a thermal state generated in optical fibers,” Opt. Express16(17), 12505–12510 (2008).
    [CrossRef] [PubMed]
  18. H. R. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature178(4541), 1046–1048 (1956).
    [CrossRef]
  19. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987).
    [CrossRef] [PubMed]
  20. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett.1(4), 173–179 (1986).
    [CrossRef]

2012 (1)

P. X. Wang, Q. Zhou, W. Zhang, Y. D. Huang, and J. D. Peng, “High-quality fiber-based heralded single-photon source at 1.5 μm,” Chin. Phys. Lett.29(5), 054215 (2012).
[CrossRef]

2011 (2)

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm,” Phys. Rev. A375, 2274 (2011).

2010 (1)

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D59(2), 309–316 (2010).
[CrossRef]

2009 (1)

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Express34, 2706–2708 (2009).

2008 (3)

2007 (1)

H. Takesue, “1.5µm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett.90(20), 204101 (2007).
[CrossRef]

2006 (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett.96(1), 010401 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
[CrossRef]

2002 (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14(7), 983–985 (2002).
[CrossRef]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
[CrossRef] [PubMed]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

1986 (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett.1(4), 173–179 (1986).
[CrossRef]

1956 (1)

H. R. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature178(4541), 1046–1048 (1956).
[CrossRef]

Alibart, O.

O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett.30(12), 1539–1541 (2005).
[CrossRef] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
[CrossRef]

Aspect, A.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett.1(4), 173–179 (1986).
[CrossRef]

Baek, B.

Baldi, P.

O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett.30(12), 1539–1541 (2005).
[CrossRef] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
[CrossRef]

Beveratos, A.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Brown, H. R.

H. R. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature178(4541), 1046–1048 (1956).
[CrossRef]

Cheng, J. R.

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm,” Phys. Rev. A375, 2274 (2011).

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D59(2), 309–316 (2010).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Express34, 2706–2708 (2009).

Cohen, O.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Cui, L.

Dyer, S. D.

Eisaman, M. D.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A78(1), 013844 (2008).
[CrossRef]

Fan, J.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A78(1), 013844 (2008).
[CrossRef]

Fasel, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
[CrossRef]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14(7), 983–985 (2002).
[CrossRef]

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun.246(4-6), 545–550 (2005).
[CrossRef]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett.96(1), 010401 (2006).
[CrossRef] [PubMed]

Gisin, N.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
[CrossRef]

Goldschmidt, E. A.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A78(1), 013844 (2008).
[CrossRef]

Grangier, P.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett.1(4), 173–179 (1986).
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

Huang, Y. D.

P. X. Wang, Q. Zhou, W. Zhang, Y. D. Huang, and J. D. Peng, “High-quality fiber-based heralded single-photon source at 1.5 μm,” Chin. Phys. Lett.29(5), 054215 (2012).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm,” Phys. Rev. A375, 2274 (2011).

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D59(2), 309–316 (2010).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Express34, 2706–2708 (2009).

Inoue, K.

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun.246(4-6), 545–550 (2005).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Kumar, P.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14(7), 983–985 (2002).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Li, X.

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett.96(1), 010401 (2006).
[CrossRef] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett.96(1), 010401 (2006).
[CrossRef] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Migdall, A.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A78(1), 013844 (2008).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Nam, S. W.

Ostrowsky, D. B.

Ou, Z. Y.

X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Observation of quantum interference between a single-photon state and a thermal state generated in optical fibers,” Opt. Express16(17), 12505–12510 (2008).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Peng, J. D.

P. X. Wang, Q. Zhou, W. Zhang, Y. D. Huang, and J. D. Peng, “High-quality fiber-based heralded single-photon source at 1.5 μm,” Chin. Phys. Lett.29(5), 054215 (2012).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm,” Phys. Rev. A375, 2274 (2011).

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D59(2), 309–316 (2010).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Express34, 2706–2708 (2009).

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun.246(4-6), 545–550 (2005).
[CrossRef]

Polyakov, S. V.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A78(1), 013844 (2008).
[CrossRef]

Roger, G.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett.1(4), 173–179 (1986).
[CrossRef]

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14(7), 983–985 (2002).
[CrossRef]

Silberhorn, C.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Smith, B. J.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Söller, C.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Stevens, M. J.

Takesue, H.

H. Takesue, “1.5µm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett.90(20), 204101 (2007).
[CrossRef]

H. Takesue and K. Inoue, “1.5- µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

Tanzilli, S.

O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett.30(12), 1539–1541 (2005).
[CrossRef] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
[CrossRef]

Twiss, R. Q.

H. R. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature178(4541), 1046–1048 (1956).
[CrossRef]

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14(7), 983–985 (2002).
[CrossRef]

Walmsley, I. A.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Wang, P. X.

P. X. Wang, Q. Zhou, W. Zhang, Y. D. Huang, and J. D. Peng, “High-quality fiber-based heralded single-photon source at 1.5 μm,” Chin. Phys. Lett.29(5), 054215 (2012).
[CrossRef]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Yang, L.

Yu, D.

Zbinden, H.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
[CrossRef]

Zeilinger, A.

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Zhang, W.

P. X. Wang, Q. Zhou, W. Zhang, Y. D. Huang, and J. D. Peng, “High-quality fiber-based heralded single-photon source at 1.5 μm,” Chin. Phys. Lett.29(5), 054215 (2012).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm,” Phys. Rev. A375, 2274 (2011).

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D59(2), 309–316 (2010).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Express34, 2706–2708 (2009).

Zhou, Q.

P. X. Wang, Q. Zhou, W. Zhang, Y. D. Huang, and J. D. Peng, “High-quality fiber-based heralded single-photon source at 1.5 μm,” Chin. Phys. Lett.29(5), 054215 (2012).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm,” Phys. Rev. A375, 2274 (2011).

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D59(2), 309–316 (2010).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Express34, 2706–2708 (2009).

Appl. Phys. Lett. (1)

H. Takesue, “1.5µm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett.90(20), 204101 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

P. X. Wang, Q. Zhou, W. Zhang, Y. D. Huang, and J. D. Peng, “High-quality fiber-based heralded single-photon source at 1.5 μm,” Chin. Phys. Lett.29(5), 054215 (2012).
[CrossRef]

Eur. Phys. J. D (1)

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D59(2), 309–316 (2010).
[CrossRef]

Europhys. Lett. (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett.1(4), 173–179 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14(7), 983–985 (2002).
[CrossRef]

Nature (3)

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
[CrossRef] [PubMed]

H. R. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature178(4541), 1046–1048 (1956).
[CrossRef]

New J. Phys. (1)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys.6, 163 (2004).
[CrossRef]

Opt. Commun. (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun.246(4-6), 545–550 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (3)

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A78(1), 013844 (2008).
[CrossRef]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Q. Zhou, W. Zhang, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm,” Phys. Rev. A375, 2274 (2011).

Phys. Rev. Lett. (2)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett.96(1), 010401 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SFWM processes. (a) Scalar scattering process. (b) Vector scattering process. (c) Two scalar SFWM processes along both axes.

Fig. 2
Fig. 2

Experiment Setup. VOA, variable optical attenuator; P, polarizer; HWP, half-wavelength plate; PC, polarization controller; FM, faraday mirror; PBS, polarization beam splitter; PD, photon detector; VDL, variable delay line; SPD, single photon detector; Hi, Idler photons along H-axis; Vi, Idler photons along V-axis; Hs, Signal photons along H-axis; Vs, Signal photons along V-axis.

Fig. 3
Fig. 3

Photon generation rates and measured photon count rates under different pump levels. (a) Photon count rates at Hi (Idler photons along H-axis) ports. The circles with error bars in the figure are measured photon count rates, which is fitted by a polynomial of a P 2 +bP+c , where P is the pump level, a, b and c are the fitting parameters. The fitting result is shown by the solid line. The dash-dot, dot and dash lines in the figure are the fitting results of the constant, linear, and quadratic terms of the fitting polynomial, which represent the contributions of SPD dark counting, noise photons generated by spontaneous Raman scattering or residual pump light and generated correlated photon pairs by the scalar SFWM, respectively. (b) Photon count rates at Vi (Idler photons along V-axis) ports, which are of the same symbol and line definitions as Fig. 3(a).

Fig. 4
Fig. 4

Measured preparation efficiencies under different idler photon generation rates. (a) Preparation efficiencies at Hs (Signal photons along H-axis) ports. (b) Preparation efficiencies at Vs (Signal photons along V-axis) ports.

Fig. 5
Fig. 5

Measured g(2)(0) under different idler photon generation rates. (a) g(2)(0) at Hs (Signal photons along H-axis) ports. (b) g(2)(0) at Vs (Signal photons along V-axis) ports.

Fig. 6
Fig. 6

Results of HOM interference between the heralded photons of ports Hs and Vs as a function of length difference between two paths. (a) Result with 60s accumulation when idler photon generation rates is 0.187 per pulse. (b) Result with 180s accumulation when idler photon generation rates is 0.0048 per pulse.

Tables (1)

Tables Icon

Table 1 Characters of SPDs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N c = C 0 ( 1 V HOM e 0.5 (Δ T 1 Δl/c) 2 )

Metrics