Abstract

Large-area gold nanoring arrays were fabricated using interference lithography and metallic transformation through annealing of colloidal gold nanoparticles. The strong surface tension of the suspension solution and the molten gold, as well as the effective distance of these interaction mechanisms, is responsible for the creation of gold nanorings. The size and shape of the gold nanorings can be controlled by adjusting the size of the holes in the template photoresist grating, which is accomplished in the stage of interference lithography. Furthermore, the concentration of the colloidal gold nanoparticles and the annealing temperature can be utilized to achieve further optimization of the gold nanoring structures. Optical spectroscopic measurements show unique plasmonic response of the nanoring arrays in the visible and in the infrared spectral ranges, which agrees well with the theoretical simulation. This fabrication method provides a simple and low-cost route for achieving metallic nanoring arrays in a large scale for practical applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
    [CrossRef] [PubMed]
  2. X. P. Zhang, H. M. Liu, and Z. G. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics6(2), 273–279 (2011).
    [CrossRef]
  3. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
    [CrossRef]
  4. C. Kuemin, L. Nowack, L. Bozano, N. D. Spencer, and H. Wolf, “Oriented assembly of gold nanorods on the single-particle level,” Adv. Funct. Mater.22(4), 702–708 (2012).
    [CrossRef]
  5. C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
    [CrossRef] [PubMed]
  6. H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
    [CrossRef] [PubMed]
  7. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics6(11), 709–713 (2012).
    [CrossRef]
  8. X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
    [CrossRef]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  10. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
    [CrossRef]
  11. J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010).
    [CrossRef]
  12. M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett.35(5), 760–762 (2010).
    [CrossRef] [PubMed]
  13. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
    [CrossRef] [PubMed]
  14. L. Wang, F. Montagne, P. Hoffmann, and R. Pugin, “Gold nanoring arrays from responsive block copolymer templates,” Chem. Commun. (Camb.)25(25), 3798–3800 (2009).
    [CrossRef] [PubMed]
  15. T. A. Kelf, Y. Tanaka, O. Matsuda, E. M. Larsson, D. S. Sutherland, and O. B. Wright, “Ultrafast vibrations of gold nanorings,” Nano Lett.11(9), 3893–3898 (2011).
    [CrossRef] [PubMed]
  16. X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
    [CrossRef] [PubMed]
  17. X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
    [CrossRef]
  18. C. J. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett.100(17), 173114 (2012).
    [CrossRef]

2012

C. Kuemin, L. Nowack, L. Bozano, N. D. Spencer, and H. Wolf, “Oriented assembly of gold nanorods on the single-particle level,” Adv. Funct. Mater.22(4), 702–708 (2012).
[CrossRef]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics6(11), 709–713 (2012).
[CrossRef]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

C. J. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett.100(17), 173114 (2012).
[CrossRef]

2011

T. A. Kelf, Y. Tanaka, O. Matsuda, E. M. Larsson, D. S. Sutherland, and O. B. Wright, “Ultrafast vibrations of gold nanorings,” Nano Lett.11(9), 3893–3898 (2011).
[CrossRef] [PubMed]

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

X. P. Zhang, H. M. Liu, and Z. G. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics6(2), 273–279 (2011).
[CrossRef]

2010

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett.35(5), 760–762 (2010).
[CrossRef] [PubMed]

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010).
[CrossRef]

2009

L. Wang, F. Montagne, P. Hoffmann, and R. Pugin, “Gold nanoring arrays from responsive block copolymer templates,” Chem. Commun. (Camb.)25(25), 3798–3800 (2009).
[CrossRef] [PubMed]

2008

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

2007

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
[CrossRef]

2006

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

2001

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

Alaverdyan, Y.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Banaee, M. G.

Bozano, L.

C. Kuemin, L. Nowack, L. Bozano, N. D. Spencer, and H. Wolf, “Oriented assembly of gold nanorods on the single-particle level,” Adv. Funct. Mater.22(4), 702–708 (2012).
[CrossRef]

Braun, P. V.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics6(11), 709–713 (2012).
[CrossRef]

Cataldo, S.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Chi, T. T.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Chiang, C. P.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Chou, H. Y.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Crozier, K. B.

Eurenius, L.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Frank, B.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Friend, R. H.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Giessen, H.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Guo, H. C.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

Henzie, J.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

Hodgkiss, J. M.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

Hoffmann, P.

L. Wang, F. Montagne, P. Hoffmann, and R. Pugin, “Gold nanoring arrays from responsive block copolymer templates,” Chem. Commun. (Camb.)25(25), 3798–3800 (2009).
[CrossRef] [PubMed]

Huang, C. J.

C. J. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett.100(17), 173114 (2012).
[CrossRef]

Käll, M.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Kawamura, T.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010).
[CrossRef]

Kelf, T. A.

T. A. Kelf, Y. Tanaka, O. Matsuda, E. M. Larsson, D. S. Sutherland, and O. B. Wright, “Ultrafast vibrations of gold nanorings,” Nano Lett.11(9), 3893–3898 (2011).
[CrossRef] [PubMed]

Kiang, Y. W.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Kuemin, C.

C. Kuemin, L. Nowack, L. Bozano, N. D. Spencer, and H. Wolf, “Oriented assembly of gold nanorods on the single-particle level,” Adv. Funct. Mater.22(4), 702–708 (2012).
[CrossRef]

Lagae, L.

C. J. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett.100(17), 173114 (2012).
[CrossRef]

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010).
[CrossRef]

Larsson, E. M.

T. A. Kelf, Y. Tanaka, O. Matsuda, E. M. Larsson, D. S. Sutherland, and O. B. Wright, “Ultrafast vibrations of gold nanorings,” Nano Lett.11(9), 3893–3898 (2011).
[CrossRef] [PubMed]

Lee, C. K.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Lee, M. H.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

Lee, P. T.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Lin, J. W.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Liu, H. M.

X. P. Zhang, H. M. Liu, and Z. G. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics6(2), 273–279 (2011).
[CrossRef]

Lodewijks, K.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010).
[CrossRef]

Lu, S. P.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Matsuda, O.

T. A. Kelf, Y. Tanaka, O. Matsuda, E. M. Larsson, D. S. Sutherland, and O. B. Wright, “Ultrafast vibrations of gold nanorings,” Nano Lett.11(9), 3893–3898 (2011).
[CrossRef] [PubMed]

Montagne, F.

L. Wang, F. Montagne, P. Hoffmann, and R. Pugin, “Gold nanoring arrays from responsive block copolymer templates,” Chem. Commun. (Camb.)25(25), 3798–3800 (2009).
[CrossRef] [PubMed]

Nau, D.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Neubrech, F.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Nowack, L.

C. Kuemin, L. Nowack, L. Bozano, N. D. Spencer, and H. Wolf, “Oriented assembly of gold nanorods on the single-particle level,” Adv. Funct. Mater.22(4), 702–708 (2012).
[CrossRef]

Odom, T. W.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

Olsson, E.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Pang, Z. G.

X. P. Zhang, H. M. Liu, and Z. G. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics6(2), 273–279 (2011).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Pugin, R.

L. Wang, F. Montagne, P. Hoffmann, and R. Pugin, “Gold nanoring arrays from responsive block copolymer templates,” Chem. Commun. (Camb.)25(25), 3798–3800 (2009).
[CrossRef] [PubMed]

Sepúlveda, B.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Shioi, M.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010).
[CrossRef]

Spencer, N. D.

C. Kuemin, L. Nowack, L. Bozano, N. D. Spencer, and H. Wolf, “Oriented assembly of gold nanorods on the single-particle level,” Adv. Funct. Mater.22(4), 702–708 (2012).
[CrossRef]

Stakenborg, T.

C. J. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett.100(17), 173114 (2012).
[CrossRef]

Sun, B. Q.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Sutherland, D. S.

T. A. Kelf, Y. Tanaka, O. Matsuda, E. M. Larsson, D. S. Sutherland, and O. B. Wright, “Ultrafast vibrations of gold nanorings,” Nano Lett.11(9), 3893–3898 (2011).
[CrossRef] [PubMed]

Tanaka, Y.

T. A. Kelf, Y. Tanaka, O. Matsuda, E. M. Larsson, D. S. Sutherland, and O. B. Wright, “Ultrafast vibrations of gold nanorings,” Nano Lett.11(9), 3893–3898 (2011).
[CrossRef] [PubMed]

Tetreault, N.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
[CrossRef]

Tsai, C. Y.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Tsai, M. T.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Tseng, H. Y.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Van Dorpe, P.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010).
[CrossRef]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

Wang, J. Y.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Wang, L.

L. Wang, F. Montagne, P. Hoffmann, and R. Pugin, “Gold nanoring arrays from responsive block copolymer templates,” Chem. Commun. (Camb.)25(25), 3798–3800 (2009).
[CrossRef] [PubMed]

Wang, S.

C. J. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett.100(17), 173114 (2012).
[CrossRef]

Wolf, H.

C. Kuemin, L. Nowack, L. Bozano, N. D. Spencer, and H. Wolf, “Oriented assembly of gold nanorods on the single-particle level,” Adv. Funct. Mater.22(4), 702–708 (2012).
[CrossRef]

Wright, O. B.

T. A. Kelf, Y. Tanaka, O. Matsuda, E. M. Larsson, D. S. Sutherland, and O. B. Wright, “Ultrafast vibrations of gold nanorings,” Nano Lett.11(9), 3893–3898 (2011).
[CrossRef] [PubMed]

Wu, S. Y.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Wu, Y. C.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Yang, C. C.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Yang, K. M.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Ye, J.

C. J. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett.100(17), 173114 (2012).
[CrossRef]

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010).
[CrossRef]

Zhang, C. J.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Zhang, X. P.

X. P. Zhang, H. M. Liu, and Z. G. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics6(2), 273–279 (2011).
[CrossRef]

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Zhao, J.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

ACS Nano

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. J. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Adv. Funct. Mater.

C. Kuemin, L. Nowack, L. Bozano, N. D. Spencer, and H. Wolf, “Oriented assembly of gold nanorods on the single-particle level,” Adv. Funct. Mater.22(4), 702–708 (2012).
[CrossRef]

Adv. Mater.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

Appl. Phys. Lett.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007).
[CrossRef]

C. J. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett.100(17), 173114 (2012).
[CrossRef]

Chem. Commun. (Camb.)

L. Wang, F. Montagne, P. Hoffmann, and R. Pugin, “Gold nanoring arrays from responsive block copolymer templates,” Chem. Commun. (Camb.)25(25), 3798–3800 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

Nano Lett.

T. A. Kelf, Y. Tanaka, O. Matsuda, E. M. Larsson, D. S. Sutherland, and O. B. Wright, “Ultrafast vibrations of gold nanorings,” Nano Lett.11(9), 3893–3898 (2011).
[CrossRef] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Nanotechnology

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology21(29), 295102 (2010).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

Nat. Photonics

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics6(11), 709–713 (2012).
[CrossRef]

Nat. Phys.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007).
[CrossRef]

Opt. Lett.

Plasmonics

X. P. Zhang, H. M. Liu, and Z. G. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics6(2), 273–279 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The SEM image of the precursor for the gold nanorings annealed at 250 °C. (b) The enlarged image of a single hole filled with Au NPs.

Fig. 2
Fig. 2

SEM (a) and AFM (b) images of the gold nanoring arrays with a period of 1 μm.

Fig. 3
Fig. 3

Mechanisms for the formation of gold nanoring arrays using colloidal Au NPs and PR holes fabricated by interference lithography.

Fig. 4
Fig. 4

Influence of the template hole diameter on the shape and size of the fabricated gold nanoring arrays.

Fig. 5
Fig. 5

SEM images of (a) the gold nanoisland and (b) gold nanoring arrays that are fabricated using different duty cycles of the photoresist hole-array template.

Fig. 6
Fig. 6

The optical extinction spectra measured on the gold nanostructures shown in Fig. 2 and Fig. 5(b), where the black and the doted curve red curves correspond to the structures in Fig. 2, and Fig. 5(b), the dashed curve correspond to the simulated results for the structures shown in Fig. 2, respectively.

Fig. 7
Fig. 7

The calculated local electric field (log |EF|2) of an Au nanoring in the xy-plane using y-polarized excitation at (a) 600 and (b) 1800 nm.

Fig. 8
Fig. 8

(a) SEM image of the elliptical gold nanoring arrays. (b) The optical extinction spectra measured on the elliptical gold nanoring arrays Fig. 8(b), where the black and the red curves correspond to the polarization in X and Y directions, respectively.

Metrics