Abstract

Accurate estimation of the diffuse attenuation coefficient is important for our understanding the availability of light to underwater communities, which provide critical information for the China seas ecosystem. However, algorithm developments and validations of the diffuse attenuation coefficient in the China seas have been seldom performed before and therefore our knowledge on the quality of retrieval of the diffuse attenuate coefficient is poor. In this paper optical data at 306 sites collected in coastal waters of the China seas between July 2000 and February 2004 are used to evaluate three typical existing Kd(490) models. The in situ Kd(490) varied greatly among different sites from 0.029 m−1 to 10.3 m−1, with a mean of 0.92 ± 1.59 m−1. Results show that the empirical model and the semi-analytical model significantly underestimate the Kd(490) value, with estimated mean values of 0.24 m−1 and 0.5 m−1, respectively. The combined model also shows significant differences when the in situ Kd(490) range from 0.2 m−1 to 1 m−1. Thus, the present study proposes that the three algorithms cannot be directly used to appropriately estimate Kd(490) in the turbid coastal waters of the China seas without a fine tuning for regional applications. In this paper, new Kd(490) algorithms are developed based on the semi-analytical retrieval of the absorption coefficient a(m−1) and the backscattering coefficient bb(m−1) from the reflectance at two wavelengths, 488 and 667 nm for the Moderate Resolution Imaging Spectroradiometer (MODIS) and 490 and 705 nm for the Medium Resolution Imaging Spectrometer (MERIS) applications, respectively. With the new approaches, the mean ratio and the relative percentage difference are 1.05 and 4.6%, respectively, based on an independent in situ data set. Furthermore, the estimates are reliable within a factor of 1.9 (95% confidence interval). Comparisons also show that the Kd(490) derived with the new algorithms are well correlated with the in situ measurements. Our results showed a good improvement in the estimation for Kd(490) using the new approaches, contrasting with existing empirical, semi-analytical and combined models. Therefore, we propose the new approaches for accurate retrieval of Kd(490) in the China seas.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K (490), using water-leaving radiances at 490 and 555 nm,” SeaWiFS postlaunch calibration and validation analyses, part 3, 24–27 (2000).
  2. Z. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).
  3. M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007).
    [CrossRef]
  4. M. Wang, S. Son, and L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114(C10), C10–C11 (2009).
    [CrossRef]
  5. T. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
    [CrossRef]
  6. Y. Zhang, X. Liu, Y. Yin, M. Wang, and B. Qin, “A simple optical model to estimate diffuse attenuation coefficient of photosynthetically active radiation in an extremely turbid lake from surface reflectance,” Opt. Express20(18), 20482–20493 (2012).
    [CrossRef] [PubMed]
  7. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
    [CrossRef]
  8. Z. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005).
    [CrossRef]
  9. Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
    [CrossRef]
  10. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113(8), 1587–1597 (2009).
    [CrossRef]
  11. J. L. Mueller, G. S. Fargion, C. R. McClain, J. L. Mueller, S. W. Brown, D. K. Clark, B. C. Johnson, H. Yoon, K. R. Lykke, and S. J. Flora, “Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI: Special Topics in Ocean Optics Protocols, Part 2,” NASA Tech. Memo 211621 (2003).
  12. J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
    [CrossRef]
  13. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
    [CrossRef]
  14. Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt.41(12), 2191–2201 (2002).
    [CrossRef] [PubMed]
  15. M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr.47(3), 911–915 (2002).
    [CrossRef]
  16. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
    [CrossRef]
  17. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res.106(C7), 14129–14142 (2001).
    [CrossRef]
  18. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997).
    [CrossRef] [PubMed]
  19. H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” in Ocean Optics XII (International Society for Optics and Photonics, 1994), 174–183 (1994).

2013 (1)

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

2012 (2)

2009 (2)

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113(8), 1587–1597 (2009).
[CrossRef]

M. Wang, S. Son, and L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114(C10), C10–C11 (2009).
[CrossRef]

2007 (3)

T. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
[CrossRef]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007).
[CrossRef]

2005 (2)

Z. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).

Z. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005).
[CrossRef]

2003 (1)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
[CrossRef]

2002 (2)

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr.47(3), 911–915 (2002).
[CrossRef]

Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt.41(12), 2191–2201 (2002).
[CrossRef] [PubMed]

2001 (1)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res.106(C7), 14129–14142 (2001).
[CrossRef]

1997 (1)

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
[CrossRef]

Arnone, R.

Z. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005).
[CrossRef]

Babin, M.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr.47(3), 911–915 (2002).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
[CrossRef]

Barnard, A. H.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res.106(C7), 14129–14142 (2001).
[CrossRef]

Barnes, B.

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

Boss, E.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res.106(C7), 14129–14142 (2001).
[CrossRef]

Bricaud, A.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
[CrossRef]

Carder, K. L.

Z. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).

Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt.41(12), 2191–2201 (2002).
[CrossRef] [PubMed]

Chen, J.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
[CrossRef]

Claustre, H.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
[CrossRef]

Darecki, M.

Z. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).

Davis, C. O.

Z. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).

Doron, M.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007).
[CrossRef]

Du, K.

Z. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005).
[CrossRef]

English, D.

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
[CrossRef]

Fell, F.

T. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
[CrossRef]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
[CrossRef]

Franz, B. A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Fry, E. S.

Gentili, B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
[CrossRef]

Harding, L. W.

M. Wang, S. Son, and L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114(C10), C10–C11 (2009).
[CrossRef]

Hembise, O.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007).
[CrossRef]

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
[CrossRef]

Hooker, S. B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Hu, C.

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

Huot, Y.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Lapointe, B.

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

Lee, Z.

Z. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005).
[CrossRef]

Z. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).

Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt.41(12), 2191–2201 (2002).
[CrossRef] [PubMed]

Liu, X.

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res.106(C7), 14129–14142 (2001).
[CrossRef]

Mangin, A.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007).
[CrossRef]

Mao, Z.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Melo, N.

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

Morel, A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Muller-Karger, F.

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
[CrossRef]

Pan, D.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Pegau, W. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res.106(C7), 14129–14142 (2001).
[CrossRef]

Pope, R. M.

Qin, B.

Rhea, W. J.

Z. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).

Schaeffer, B.

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

Shi, W.

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113(8), 1587–1597 (2009).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
[CrossRef]

Son, S.

M. Wang, S. Son, and L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114(C10), C10–C11 (2009).
[CrossRef]

Stramski, D.

Z. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr.47(3), 911–915 (2002).
[CrossRef]

Tao, B.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Twardowski, M. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res.106(C7), 14129–14142 (2001).
[CrossRef]

Wang, M.

Y. Zhang, X. Liu, Y. Yin, M. Wang, and B. Qin, “A simple optical model to estimate diffuse attenuation coefficient of photosynthetically active radiation in an extremely turbid lake from surface reflectance,” Opt. Express20(18), 20482–20493 (2012).
[CrossRef] [PubMed]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113(8), 1587–1597 (2009).
[CrossRef]

M. Wang, S. Son, and L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114(C10), C10–C11 (2009).
[CrossRef]

Werdell, P. J.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Yin, Y.

Zaneveld, J. R. V.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res.106(C7), 14129–14142 (2001).
[CrossRef]

Zhang, T.

T. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
[CrossRef]

Zhang, Y.

Zhao, J.

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

Zhu, Q.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Appl. Opt. (2)

J. Geophys. Res. (7)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res.108(C7), 37–39 (2003).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res.106(C7), 14129–14142 (2001).
[CrossRef]

Z. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007).
[CrossRef]

M. Wang, S. Son, and L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114(C10), C10–C11 (2009).
[CrossRef]

Z. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10910 (1988).
[CrossRef]

Limnol. Oceanogr. (1)

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr.47(3), 911–915 (2002).
[CrossRef]

Limnol. Oceanogr. Methods (1)

T. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
[CrossRef]

Opt. Express (1)

Remote Sens. Environ. (4)

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

J. Zhao, B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-Karger, B. Schaeffer, and C. Hu, “Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters,” Remote Sens. Environ.131, 38–50 (2013).
[CrossRef]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113(8), 1587–1597 (2009).
[CrossRef]

Other (3)

J. L. Mueller, G. S. Fargion, C. R. McClain, J. L. Mueller, S. W. Brown, D. K. Clark, B. C. Johnson, H. Yoon, K. R. Lykke, and S. J. Flora, “Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI: Special Topics in Ocean Optics Protocols, Part 2,” NASA Tech. Memo 211621 (2003).

J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K (490), using water-leaving radiances at 490 and 555 nm,” SeaWiFS postlaunch calibration and validation analyses, part 3, 24–27 (2000).

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” in Ocean Optics XII (International Society for Optics and Photonics, 1994), 174–183 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Map of the East China Sea (a), the Pearl River Estuary and the adjacent waters (b), where in situ observation locations are indicated as blue circles

Fig. 2
Fig. 2

Spectra of the diffuse attenuation coefficient Kd(λ) from the 13 cruise surveys in the turbid coastal waters of the China seas. Thick solid line is for the mean values of Kd(λ) derived from observations in all 306 stations. Two sample spectral diffuse attenuation coefficients are also plotted to represent typical waters, the clear water (dotted line) and the turbid water (dashed line).

Fig. 3
Fig. 3

Scatterplots (in the log-log scale) of the model derived Kd(490) versus the in situ Kd(490) data from the model of (a) Mueller, 2000 [1], (b) Lee et al., 2005 [2] and (c) Wang et al., 2009 [4]. Lines of 1:1 is added on each plot (total number of data is 306)

Fig. 4
Fig. 4

Comparison of the measured and estimated Kd(490) based on an independent data set from the China seas from the model of (a) MODIS-Approach and (b) MERIS-Approach. Lines of 1:1 is added on each plot (total number of data is 306)

Fig. 5
Fig. 5

Kd(490) as a function of the remote-sensing reflectance ratio between bands of (a) 667 and 488 nm, Rrs(667)/Rrs(488) and (b) 705 and 490 nm, Rrs(705)/Rrs(490) from the in situ data sets.

Tables (3)

Tables Icon

Table 1 Typical models used to estimate the diffuse attenuation coefficient

Tables Icon

Table 2 Location and time of the 13 cruise surveys to measure ocean properties

Tables Icon

Table 3 Differences between measured Kd(490) and the algorithm derived Kd(490) with in situ remote sensing reflectance data from the PRR800 measurements being used as the algorithm inputs.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E d ( λ,z )= E d ( λ, 0 )exp[ k d ( λ )z]
r rs ( λ )= L u ( λ, 0 )/ E d ( λ, 0 )
R rs ( λ ) 0.518 r rs ( λ ) 11.562 r rs ( λ )
K d ( 490 )=( 1+0.005 θ s )a( 490 )+4.18( 10.52 e 10.8a( 490 ) ) b b ( 490 )
r rs ( λ )= g 0 u( λ )+ g 1 [ u( λ ) ] 2
u( λ )= b b ( λ ) a( λ )+ b b ( λ )
b b ( λ )= b bw ( λ )+ b bp ( λ )
a( 710 )= a w ( 710 )
b bp ( 490 )=C b bp ( 710 )
b b ( 490 )=C[ u( 710 ) 1u( 710 ) a w ( 710 ) b bw ( 710 ) ]+ b bw ( 490 )
a( 490 )= 1u( 490 ) u( 490 ) b b ( 490 )
{ K d ( 490 )=( 1+0.005 θ s ) 1u( 490 ) u( 490 ) ×{ C[ u( 710 ) 1u( 710 ) a w ( 710 ) b bw ( 710 ) ]+ b bw ( 490 ) } +4.18( 10.52 e 10.8 1u( 490 ) u( 490 ) { C[ u( 710 ) 1u( 710 ) a w ( 710 ) b bw ( 710 ) ]+ b bw ( 490 ) } ) ×{ C[ u( 710 ) 1u( 710 ) a w ( 710 ) b bw ( 710 ) ]+ b bw ( 490 ) } u( λ )= g 0 + g 0 2 +4 g 1 × R rs ( λ ) 0.518+1.562 R rs ( λ ) 2 g 1 λ=490,710
95% confidence interval= 10 1.96 SD log10

Metrics