Abstract

We propose a novel approach to generate and tune a hot spot in a dipole nanostructure of vanadium dioxide (VO2) laid on a gold (Au) substrate. By inducing a phase transition of the VO2, the spatial and spectral distributions of the hot spot generated in the feed gap of the dipole can be tuned. Our numerical simulation based on a finite-element method shows a strong intensity enhancement difference and tunability near the wavelength of 678 nm, where the hot spot shows 172-fold intensity enhancement when VO2 is in the semiconductor phase. The physical mechanisms of forming the hot spots at the two-different phases are discussed. Based on our analysis, the effects of geometric parameters in our dipole structure are investigated with an aim of enhancing the intensity and the tunability. We hope that the proposed nanostructure opens up a practical approach for the tunable near-field nano-photonic devices.

© 2013 OSA

PDF Article
OSA Recommended Articles
Controllable near-field intensity and spot size of hybrid terahertz metamaterial

Dejia Meng, M. N. F. Hoque, Wei Wang, Zhaoyang Fan, Kejia Wang, Jianjun Lai, and Changhong Chen
Opt. Lett. 40(8) 1745-1748 (2015)

Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials

Priten B. Savaliya, Arun Thomas, Rishi Dua, and Anuj Dhawan
Opt. Express 25(20) 23755-23772 (2017)

Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide

Junho Jeong, Arash Joushaghani, Suzanne Paradis, David Alain, and Joyce K. S. Poon
Opt. Lett. 40(19) 4408-4411 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  2. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  3. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
    [Crossref]
  4. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  5. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [Crossref]
  6. H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34(17), 2569–2571 (2009).
    [Crossref] [PubMed]
  7. E. Cubukcu, E. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
    [Crossref]
  8. S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
    [Crossref]
  9. A. Andryieuski, R. Malureanu, G. Biagi, T. Holmgaard, and A. Lavrinenko, “Compact dipole nanoantenna coupler to plasmonic slot waveguide,” Opt. Lett. 37(6), 1124–1126 (2012).
    [Crossref] [PubMed]
  10. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
    [Crossref] [PubMed]
  11. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  12. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  13. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
    [Crossref]
  14. Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
    [Crossref]
  15. A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
    [Crossref]
  16. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
    [Crossref] [PubMed]
  17. T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett. 95(4), 043503 (2009).
    [Crossref]
  18. B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
    [Crossref]
  19. D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, and S. Ramanathan, “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer,” J. Appl. Phys. 107(11), 114516 (2010).
    [Crossref]
  20. G. Seo, B.-J. Kim, H.-T. Kim, and Y. W. Lee, “Photo-assisted electrical oscillation in two-terminal device based on vanadium dioxide thin film,” J. Lightwave Technol. 30(16), 2718–2724 (2012).
    [Crossref]
  21. M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
    [Crossref]
  22. S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006).
    [Crossref]
  23. M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507 (1994).
    [Crossref]
  24. A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
    [Crossref]
  25. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
    [Crossref]
  26. K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
    [Crossref] [PubMed]
  27. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref] [PubMed]
  28. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
    [Crossref]
  29. H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007).
    [Crossref] [PubMed]
  30. M. J. Dicken, “Active oxide nanophotonics,” Ph.D. Thesis, California Institute of Technology (2009).

2013 (1)

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[Crossref]

2012 (3)

2011 (2)

K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[Crossref] [PubMed]

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

2010 (3)

D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, and S. Ramanathan, “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer,” J. Appl. Phys. 107(11), 114516 (2010).
[Crossref]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
[Crossref] [PubMed]

2009 (5)

H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34(17), 2569–2571 (2009).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett. 95(4), 043503 (2009).
[Crossref]

2008 (3)

2007 (2)

H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007).
[Crossref] [PubMed]

B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
[Crossref]

2006 (5)

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006).
[Crossref]

E. Cubukcu, E. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

2004 (2)

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

1994 (1)

M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507 (1994).
[Crossref]

Andryieuski, A.

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Appavoo, K.

K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[Crossref] [PubMed]

Atwater, H. A.

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Aydin, K.

Basov, D. N.

T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett. 95(4), 043503 (2009).
[Crossref]

Becker, M. F.

M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507 (1994).
[Crossref]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Biagi, G.

Biagioni, P.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Boyd, E. M.

Briggs, R. M.

Brun, A.

M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507 (1994).
[Crossref]

Buckman, B.

M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507 (1994).
[Crossref]

Capasso, F.

E. Cubukcu, E. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

Cavalleri, A.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Chae, B.-G.

T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett. 95(4), 043503 (2009).
[Crossref]

B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
[Crossref]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Chong, H.

A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Chong, H. H. W.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

Crozier, K. B.

E. Cubukcu, E. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

Cubukcu, E.

E. Cubukcu, E. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

Dekorsy, T.

A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Di Ventra, M.

T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett. 95(4), 043503 (2009).
[Crossref]

Dicken, M. J.

Donev, E. U.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Driscoll, T.

T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett. 95(4), 043503 (2009).
[Crossref]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Feldman, L. C.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Fernandez, F.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006).
[Crossref]

Fischer, H.

Fourmaux, S.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

Fu, L.

Gage, E. C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Gai, H.

Georges, P.

M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507 (1994).
[Crossref]

Giessen, H.

Glover, T. E.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Gopalakrishnan, G.

D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, and S. Ramanathan, “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer,” J. Appl. Phys. 107(11), 114516 (2010).
[Crossref]

Guo, H.

Haglund, R. F.

K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[Crossref] [PubMed]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Hecht, B.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Heimann, P. A.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

Hesselink, L.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

Hiroi, Z.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[Crossref]

Holmgaard, T.

Hsia, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Huang, J.-S.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Jimenez, J.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006).
[Crossref]

Jin, E. X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Kieffer, J.

A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Kieffer, J. C.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

Kim, B.-J.

G. Seo, B.-J. Kim, H.-T. Kim, and Y. W. Lee, “Photo-assisted electrical oscillation in two-terminal device based on vanadium dioxide thin film,” J. Lightwave Technol. 30(16), 2718–2724 (2012).
[Crossref]

B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
[Crossref]

Kim, H.

Kim, H.-T.

G. Seo, B.-J. Kim, H.-T. Kim, and Y. W. Lee, “Photo-assisted electrical oscillation in two-terminal device based on vanadium dioxide thin film,” J. Lightwave Technol. 30(16), 2718–2724 (2012).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett. 95(4), 043503 (2009).
[Crossref]

B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
[Crossref]

Kim, J.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[Crossref]

Kim, S.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Ko, C.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, and S. Ramanathan, “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer,” J. Appl. Phys. 107(11), 114516 (2010).
[Crossref]

Kort, E.

E. Cubukcu, E. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

Lavrinenko, A.

Lee, B.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[Crossref]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34(17), 2569–2571 (2009).
[Crossref] [PubMed]

Lee, I.-M.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[Crossref]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

Lee, S.-Y.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[Crossref]

Lee, W.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[Crossref]

Lee, Y.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[Crossref]

Lee, Y. W.

G. Seo, B.-J. Kim, H.-T. Kim, and Y. W. Lee, “Photo-assisted electrical oscillation in two-terminal device based on vanadium dioxide thin film,” J. Lightwave Technol. 30(16), 2718–2724 (2012).
[Crossref]

B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
[Crossref]

Lépine, T.

M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507 (1994).
[Crossref]

Lim, Y.-S.

B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
[Crossref]

Liu, H.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006).
[Crossref]

Liu, N.

Lopez, R.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Lysenko, S.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006).
[Crossref]

Ma, J.

Malureanu, R.

Martin, O. J. F.

Meyrath, T. P.

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Mun, B. S.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

Nakajima, M.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[Crossref]

Narayanamurti, V.

D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, and S. Ramanathan, “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer,” J. Appl. Phys. 107(11), 114516 (2010).
[Crossref]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Oh, D.-H.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

Oh, S.-Y.

B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
[Crossref]

Padmore, H. A.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

Park, J.

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Pryce, I. M.

Ramanathan, S.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, and S. Ramanathan, “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer,” J. Appl. Phys. 107(11), 114516 (2010).
[Crossref]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Rua, A. J.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006).
[Crossref]

Ruzmetov, D.

D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, and S. Ramanathan, “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer,” J. Appl. Phys. 107(11), 114516 (2010).
[Crossref]

Schoenlein, R.

A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Schoenlein, R. W.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

Schweizer, H.

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Seo, G.

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Suemoto, T.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[Crossref]

Suh, J. Y.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Sweatlock, L. A.

Takubo, N.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[Crossref]

Tian, Q.

Ueda, Y.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[Crossref]

Vikhnin, V.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006).
[Crossref]

Walavalkar, S.

Walser, R. M.

M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507 (1994).
[Crossref]

Wang, J.

Won, J.-Y.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[Crossref]

Xu, X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Yang, Z.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yun, S. J.

B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
[Crossref]

Zentgraf, T.

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Annu. Rev. Mater. Res. (1)

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett. 95(4), 043503 (2009).
[Crossref]

B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett. 90(2), 023515 (2007).
[Crossref]

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[Crossref]

M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507 (1994).
[Crossref]

E. Cubukcu, E. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

Appl. Surf. Sci. (1)

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006).
[Crossref]

J. Appl. Phys. (1)

D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, and S. Ramanathan, “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer,” J. Appl. Phys. 107(11), 114516 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Laser Photon. Rev. (1)

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[Crossref]

Nano Lett. (1)

K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B 69(15), 153106 (2004).
[Crossref]

Phys. Rev. Lett. (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Other (2)

H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).

M. J. Dicken, “Active oxide nanophotonics,” Ph.D. Thesis, California Institute of Technology (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics