Abstract

We present a coupler design allowing normally-incident light coupling from free-space into a monomode photonic crystal waveguide operating in the slow-light regime. Numerical three-dimensional calculations show that extraction efficiencies as high as 80% can be achieved for very large group indices up to 100. We demonstrate experimentally the device feasibility by coupling and extracting light from a photonic crystal waveguide over a large group-index range (from 10 to 60). The measurements are in good agreement with theoretical predictions. We also study numerically the impact of various geometrical parameters on the coupler performances.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
    [CrossRef] [PubMed]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
    [CrossRef]
  3. T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008).
    [CrossRef]
  4. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009).
    [CrossRef] [PubMed]
  5. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express17(9), 7206–7216 (2009).
    [CrossRef] [PubMed]
  6. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett.32(18), 2638–2640 (2007).
    [CrossRef] [PubMed]
  7. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett.31(1), 50–52 (2006).
    [CrossRef] [PubMed]
  8. P. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high- Q cavities,” J. Opt. Soc. Am. B20(11), 2274 (2003).
    [CrossRef]
  9. M. W. Lee, C. Grillet, C. G. Poulton, C. Monat, C. L. C. Smith, E. Mägi, D. Freeman, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique,” Opt. Express16(18), 13800–13808 (2008).
    [CrossRef] [PubMed]
  10. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
    [CrossRef]
  11. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003).
    [CrossRef] [PubMed]
  12. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express12(8), 1551–1561 (2004).
    [CrossRef] [PubMed]
  13. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
    [CrossRef]
  14. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
    [CrossRef]
  15. N. Le Thomas, R. Houdré, L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B76(3), 035103 (2007).
    [CrossRef]
  16. C.-C. Tsai, J. Mower, and D. Englund, “Directional free-space coupling from photonic crystal waveguides,” Opt. Express19(21), 20586–20596 (2011).
    [CrossRef] [PubMed]
  17. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
    [CrossRef]
  18. S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express18(14), 14654–14663 (2010).
    [CrossRef] [PubMed]
  19. N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82(7), 075120 (2010).
    [CrossRef]
  20. S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Bazin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti, “High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities,” Opt. Express20(17), 18876–18886 (2012).
    [CrossRef] [PubMed]
  21. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process.14, 235–254 (1977).
  22. P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
    [CrossRef]
  23. P. Lalanne, “Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron.38(7), 800–804 (2002).
    [CrossRef]
  24. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express15(18), 11042–11060 (2007).
    [CrossRef] [PubMed]
  25. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A22(9), 1844–1849 (2005).
    [CrossRef] [PubMed]
  26. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995).
    [CrossRef]
  27. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14(10), 2758–2767 (1997).
    [CrossRef]
  28. T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
    [CrossRef]
  29. S. Mazoyer, “Lumière lente dans les guides à cristaux photoniques réels,” PhD thesis, Université Paris Sud, http://hal-iogs.archives-ouvertes.fr/docs/00/65/07/43/PDF/Total_final.pdf
  30. S. Combrié, E. Weidner, A. DeRossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, “Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system,” Opt. Express14(16), 7353–7361 (2006).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

2010 (3)

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express18(14), 14654–14663 (2010).
[CrossRef] [PubMed]

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82(7), 075120 (2010).
[CrossRef]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

2009 (3)

2008 (4)

M. W. Lee, C. Grillet, C. G. Poulton, C. Monat, C. L. C. Smith, E. Mägi, D. Freeman, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique,” Opt. Express16(18), 13800–13808 (2008).
[CrossRef] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008).
[CrossRef]

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
[CrossRef]

2007 (4)

2006 (2)

2005 (2)

J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A22(9), 1844–1849 (2005).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

2004 (1)

2003 (2)

2002 (2)

P. Lalanne, “Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron.38(7), 800–804 (2002).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

1997 (1)

1995 (1)

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process.14, 235–254 (1977).

Asakawa, K.

Ayre, M.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

Baets, R.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Bansropun, S.

Barclay, P.

Bazin, A.

Beaudoin, G.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

Beggs, D. M.

Bencheikh, K.

Benisty, H.

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Borel, P.

N. Le Thomas, R. Houdré, L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B76(3), 035103 (2007).
[CrossRef]

Braive, R.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

Cassette, S.

Colman, P.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82(7), 075120 (2010).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

Combrié, S.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82(7), 075120 (2010).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

S. Combrié, E. Weidner, A. DeRossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, “Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system,” Opt. Express14(16), 7353–7361 (2006).
[CrossRef] [PubMed]

Corcoran, B.

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

De Rossi, A.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82(7), 075120 (2010).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

DeRossi, A.

Ebnali-Heidari, M.

Eggleton, B. J.

Englund, D.

Fage-Pedersen, J.

N. Le Thomas, R. Houdré, L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B76(3), 035103 (2007).
[CrossRef]

Frandsen, L.

N. Le Thomas, R. Houdré, L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B76(3), 035103 (2007).
[CrossRef]

Freeman, D.

Gaylord, T. K.

Grann, E. B.

Grillet, C.

Haddadi, S.

Halioua, Y.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

Houdré, R.

N. Le Thomas, R. Houdré, L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B76(3), 035103 (2007).
[CrossRef]

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Hugonin, J. P.

Ikeda, N.

Inoue, K.

Karle, T. J.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

Krauss, T. F.

Kuipers, L.

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express12(8), 1551–1561 (2004).
[CrossRef] [PubMed]

Lalanne, P.

Lavrinenko, A.

N. Le Thomas, R. Houdré, L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B76(3), 035103 (2007).
[CrossRef]

Le Gratiet, L.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

Le Thomas, N.

N. Le Thomas, R. Houdré, L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B76(3), 035103 (2007).
[CrossRef]

Lecamp, G.

Lee, M. W.

Le-Gratiet, L.

Levenson, J. A.

Li, L.

Luther-Davies, B.

Madden, S.

Mägi, E.

Mazoyer, S.

McNab, S.

McNab, S. J.

Mei, T.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82(7), 075120 (2010).
[CrossRef]

Mitsugi, S.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Moharam, M. G.

Moll, N.

Monat, C.

Monnier, P.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

Mower, J.

Notomi, M.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express12(8), 1551–1561 (2004).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

O’Faolain, L.

Oda, H.

Painter, O.

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process.14, 235–254 (1977).

Pommet, D. A.

Poulton, C. G.

Raineri, F.

S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Bazin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti, “High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities,” Opt. Express20(17), 18876–18886 (2012).
[CrossRef] [PubMed]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

Raj, R.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Rodier, J. C.

Roelkens, G.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

Ryu, H.

Sagnes, I.

S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Bazin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti, “High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities,” Opt. Express20(17), 18876–18886 (2012).
[CrossRef] [PubMed]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

Sauvan, C.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
[CrossRef]

Schrauwen, J.

Shinya, A.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express12(8), 1551–1561 (2004).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Smith, C. L. C.

Spasenovic, M.

Srinivasan, K.

Taillaert, D.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Talneau, A.

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process.14, 235–254 (1977).

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82(7), 075120 (2010).
[CrossRef]

Tran, Q. V.

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

Tsai, C.-C.

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

van Laere, F.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

Van Thourhout, D.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Vlasov, Y.

Vlasov, Y. A.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Weidner, E.

White, T. P.

Yacomotti, A. M.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process.14, 235–254 (1977).

IEEE J. Quantum Electron. (2)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

P. Lalanne, “Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron.38(7), 800–804 (2002).
[CrossRef]

J. Appl. Phys. (1)

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
[CrossRef]

Nat. Photonics (2)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008).
[CrossRef]

Opt. Express (10)

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express12(8), 1551–1561 (2004).
[CrossRef] [PubMed]

S. Combrié, E. Weidner, A. DeRossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, “Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system,” Opt. Express14(16), 7353–7361 (2006).
[CrossRef] [PubMed]

M. W. Lee, C. Grillet, C. G. Poulton, C. Monat, C. L. C. Smith, E. Mägi, D. Freeman, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique,” Opt. Express16(18), 13800–13808 (2008).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express17(9), 7206–7216 (2009).
[CrossRef] [PubMed]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express18(14), 14654–14663 (2010).
[CrossRef] [PubMed]

C.-C. Tsai, J. Mower, and D. Englund, “Directional free-space coupling from photonic crystal waveguides,” Opt. Express19(21), 20586–20596 (2011).
[CrossRef] [PubMed]

S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Bazin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti, “High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities,” Opt. Express20(17), 18876–18886 (2012).
[CrossRef] [PubMed]

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express15(18), 11042–11060 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (3)

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82(7), 075120 (2010).
[CrossRef]

N. Le Thomas, R. Houdré, L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B76(3), 035103 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001).
[CrossRef] [PubMed]

Other (1)

S. Mazoyer, “Lumière lente dans les guides à cristaux photoniques réels,” PhD thesis, Université Paris Sud, http://hal-iogs.archives-ouvertes.fr/docs/00/65/07/43/PDF/Total_final.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Successive steps of the design process. The objective is to realize a periodic diffractive element compatible with the PhC periodicity and able to couple/extract light in/from the PhCW shown in (a). The waveguide is formed by removing one row of holes in a triangular lattice (period a = 430 nm) of air holes (radius r = 110 nm) etched into an InP membrane (refractive index n = 3.16 and thickness h = 265 nm). (b) Adding a periodic perturbation (super-period Λ) to the W1 waveguide creates in general an aperiodic coupler because both periods a and Λ are not commensurate. (c) A periodic coupler is obtained by increasing the longitudinal period of the PhC, ac = a + 30 nm = 460 nm, in order to render Λ and the new period ac commensurate, Λ = 3ac. (d) We have chosen to keep the holes position unchanged and to create the periodic perturbation by increasing and decreasing the radius of the two inner rows of holes (rc = r ± Δr). We obtain a heterostructure coupler with a super-period Λ = 3ac.

Fig. 2
Fig. 2

Coupler performance. (a) The heterostructure coupler shown in Fig. 1(d) with Δr = 35 nm is inserted between two semi-infinite W1 waveguides. The coupler has a finite length Lc = NΛ and its performance can be quantified by the reflection R, the transmission T and the extraction efficiency O = 1 – RT. (b) Dispersion curves of the guided Bloch mode of the W1 waveguide (dashed line) and of the leaky Bloch mode of the coupler (solid line). The latter lies above the light line (thin solid line). The guided Bloch mode of the W1 waveguide is used as the incident mode in the scattering problem in (a). Its cutoff wavelength where ng → ∞ is λg ≈1.561 µm. (c) Reflection R (dashed blue line) and extraction O (solid red line) as a function of the wavelength for N = 30. (d) Same quantities for a semi-infinite coupler (N = ∞ and O = 1 – R since T = 0). Large extraction efficiencies can be obtained around ng = 50.

Fig. 3
Fig. 3

(a) SEM picture of the interface between the W1 waveguide (on the right of the dashed-dotted white line) and the heterostructure coupler (on the left of the dashed-dotted white line). (b) Simplified description of the transmission measurement setup. The red framed picture shows different parallel waveguides (horizontal dark lines) with light being coupled into the central one. The large bright spot on the left is the incident spot reflected by the input coupler and the weak elongated spot on the right correspond to the output coupler and shows where the light is extracted from the waveguide.

Fig. 4
Fig. 4

(a) Normalized intensity of a typical transmission signal measured for a 200-µm-long system {coupler - W1 – coupler}. (b) Top part: Black and red lines represent the transmitted signal of two different systems put end-to-end. The red line corresponds to the same system as in (a), while the black line corresponds to a system with one additional hole in the waveguide at the W1/coupler junction (see the SEM picture in the inset). Bottom part: Black dots and red dots represent the group-index values respectively extracted from the corresponding measured transmission signal. In addition, the blue dashed line presents a numerical calculation of the group index evolution. The insets present SEM pictures of the actual coupler region respectively with and without the “mirror hole”.

Fig. 5
Fig. 5

Performance of the coupler for different values of the longitudinal period ac. The other geometrical parameters of the system are the same as in Fig. 1(d) with Δr = 35 nm. (a) Extraction angle θ for ac = 450, 460, 470, 480 and 490 nm (magenta, red, black, green and blue curves respectively). (b) Extraction efficiency O = 1 – RT for ac = 460 nm (red) and ac = 490 nm (blue). Solid and dashed curves correspond to N = 30 and N = ∞ (semi-infinite coupler). (c) Extraction efficiency as a function of the coupler length for ac = 460 nm. N is the number of super-periods in the coupler, Lc = NΛ, see Fig. 2(a). Solid and dashed curves correspond to ng = 50 and ng = 80.

Tables (1)

Tables Icon

Table 1 Characteristics of the leaky Bloch mode supported by the heterostructure coupler shown in Fig. 1(d) with a = 430 nm, ac = 460 nm, r = 110 nm and Δr = 35 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 0 n 0 mK=0
n g = λ 2 2LΔλ

Metrics