Abstract

We report on a study of polarization-modulation experiments on the 4 → 3 hyperfine component of the D1 transition in Cs vapor contained in a paraffin-coated cell. The laser beam’s polarization was switched between left- and right-circular polarization at a rate of 200 Hz. Variations of the transmitted light power were recorded while varying the amplitude of a transverse magnetic field. The power shows electromagnetically induced transparency (EIT) resonances when the atomic Larmor frequency matches a harmonic of the modulation frequency. We made a quantitative study of the resonance amplitudes with square-wave modulations of various duty cycles, and find an excellent agreement with recent algebraic model predictions.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett.6, 280–281 (1961).
    [CrossRef]
  2. V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mxmagnetometer,” Opt. Express20, 14201–14212 (2012).
    [CrossRef] [PubMed]
  3. N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
    [CrossRef]
  4. V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
    [CrossRef]
  5. M. Huang and J. C. Camparo, “Coherent population trapping under periodic polarization modulation: Appearance of the CPT doublet,” Phys. Rev. A85, 012509 (2012).
    [CrossRef]
  6. A. Ben-Kish and M.V. Romalis, “Dead-Zone-Free Atomic Magnetometry with Simultaneous Excitation of Orientation and Alignment Resonances,” Phys. Rev. Lett.105,193601 (2010).
    [CrossRef]
  7. Z. D. Grujić and A. Weis, “Atomic magnetic resonance induced by a amplitude-, frequency-, or polarization-modulated light,” arXiv:1305.6574 [physics.atom-ph] (May2013).
  8. E. B. Aleksandrov, “Optical manifestations of the interference of nondegenerate atomic states,” Sov. Phys. Usp.15, 436–451 (1973).
    [CrossRef]
  9. E. B. Alexandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Dynamic effects in nonlinear magneto-optics of atoms and molecules: review,” J. Opt. Soc. Am. B22, 7–20 (2005).
    [CrossRef]
  10. N. Castagna and A. Weis, “Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect,” Phys. Rev. A84, 053421 (2011).
    [CrossRef]
  11. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G.M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
    [CrossRef]
  12. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl Phys. B75, 613–619 (2002).
    [CrossRef]
  13. N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
    [CrossRef]
  14. E. Breschi, Z. Grujić, and A. Weis, “In-situ calibration of magnetic field coils using free-induction decay of atomic alignment,” submitted to Appl. Phys. B(2013).
  15. E. Breschi and A. Weis, “Ground-state Hanle effect based on atomic alignment,” Phys. Rev. A86, 053427 (2012).
    [CrossRef]
  16. E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys.251, 244–251 (1996).

2013 (2)

Z. D. Grujić and A. Weis, “Atomic magnetic resonance induced by a amplitude-, frequency-, or polarization-modulated light,” arXiv:1305.6574 [physics.atom-ph] (May2013).

E. Breschi, Z. Grujić, and A. Weis, “In-situ calibration of magnetic field coils using free-induction decay of atomic alignment,” submitted to Appl. Phys. B(2013).

2012 (3)

E. Breschi and A. Weis, “Ground-state Hanle effect based on atomic alignment,” Phys. Rev. A86, 053427 (2012).
[CrossRef]

V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mxmagnetometer,” Opt. Express20, 14201–14212 (2012).
[CrossRef] [PubMed]

M. Huang and J. C. Camparo, “Coherent population trapping under periodic polarization modulation: Appearance of the CPT doublet,” Phys. Rev. A85, 012509 (2012).
[CrossRef]

2011 (1)

N. Castagna and A. Weis, “Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect,” Phys. Rev. A84, 053421 (2011).
[CrossRef]

2010 (1)

A. Ben-Kish and M.V. Romalis, “Dead-Zone-Free Atomic Magnetometry with Simultaneous Excitation of Orientation and Alignment Resonances,” Phys. Rev. Lett.105,193601 (2010).
[CrossRef]

2009 (1)

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

2006 (2)

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

2005 (1)

2003 (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G.M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

2002 (1)

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl Phys. B75, 613–619 (2002).
[CrossRef]

1996 (1)

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys.251, 244–251 (1996).

1973 (1)

E. B. Aleksandrov, “Optical manifestations of the interference of nondegenerate atomic states,” Sov. Phys. Usp.15, 436–451 (1973).
[CrossRef]

1961 (1)

W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett.6, 280–281 (1961).
[CrossRef]

Acosta, V.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

Aleksandrov, E. B.

E. B. Aleksandrov, “Optical manifestations of the interference of nondegenerate atomic states,” Sov. Phys. Usp.15, 436–451 (1973).
[CrossRef]

Alexandrov, E. B.

E. B. Alexandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Dynamic effects in nonlinear magneto-optics of atoms and molecules: review,” J. Opt. Soc. Am. B22, 7–20 (2005).
[CrossRef]

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys.251, 244–251 (1996).

Auzinsh, M.

Balabas, M. V.

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys.251, 244–251 (1996).

Bell, W.

W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett.6, 280–281 (1961).
[CrossRef]

Ben-Kish, A.

A. Ben-Kish and M.V. Romalis, “Dead-Zone-Free Atomic Magnetometry with Simultaneous Excitation of Orientation and Alignment Resonances,” Phys. Rev. Lett.105,193601 (2010).
[CrossRef]

Bison, G.

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

Bloom, A.

W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett.6, 280–281 (1961).
[CrossRef]

Breschi, E.

E. Breschi, Z. Grujić, and A. Weis, “In-situ calibration of magnetic field coils using free-induction decay of atomic alignment,” submitted to Appl. Phys. B(2013).

E. Breschi and A. Weis, “Ground-state Hanle effect based on atomic alignment,” Phys. Rev. A86, 053427 (2012).
[CrossRef]

Budker, D.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

E. B. Alexandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Dynamic effects in nonlinear magneto-optics of atoms and molecules: review,” J. Opt. Soc. Am. B22, 7–20 (2005).
[CrossRef]

Camparo, J. C.

M. Huang and J. C. Camparo, “Coherent population trapping under periodic polarization modulation: Appearance of the CPT doublet,” Phys. Rev. A85, 012509 (2012).
[CrossRef]

Castagna, N.

N. Castagna and A. Weis, “Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect,” Phys. Rev. A84, 053421 (2011).
[CrossRef]

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

Di Domenico, G.

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

Fattori, M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G.M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Gawlik, N. W.

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

Gawlik, W.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl Phys. B75, 613–619 (2002).
[CrossRef]

Graf, M.

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

Grujic, Z.

E. Breschi, Z. Grujić, and A. Weis, “In-situ calibration of magnetic field coils using free-induction decay of atomic alignment,” submitted to Appl. Phys. B(2013).

Grujic, Z. D.

Z. D. Grujić and A. Weis, “Atomic magnetic resonance induced by a amplitude-, frequency-, or polarization-modulated light,” arXiv:1305.6574 [physics.atom-ph] (May2013).

Hofer, A.

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

Hovde, D. C.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

Huang, M.

M. Huang and J. C. Camparo, “Coherent population trapping under periodic polarization modulation: Appearance of the CPT doublet,” Phys. Rev. A85, 012509 (2012).
[CrossRef]

IJsselsteijn, R.

Jackson-Kimball, D. F.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

Kimball, D. F.

Knowles, P.

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

Krzemien, L.

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

Lamporesi, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G.M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Ledbetter, M. P.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

Macchione, C.

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

Meyer, H.

Pasgalev, A. S.

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys.251, 244–251 (1996).

Petelski, T.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G.M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Pustelny, S.

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

Rochester, S. M.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

E. B. Alexandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Dynamic effects in nonlinear magneto-optics of atoms and molecules: review,” J. Opt. Soc. Am. B22, 7–20 (2005).
[CrossRef]

Romalis, M.V.

A. Ben-Kish and M.V. Romalis, “Dead-Zone-Free Atomic Magnetometry with Simultaneous Excitation of Orientation and Alignment Resonances,” Phys. Rev. Lett.105,193601 (2010).
[CrossRef]

Sangla, D.

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

Saudan, H.

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

Scholtes, T.

Schultze, V.

Stuhler, J.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G.M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Sushkov, A.O.

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

Tino, G.M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G.M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Vershovskii, A. K.

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys.251, 244–251 (1996).

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl Phys. B75, 613–619 (2002).
[CrossRef]

Weis, A.

Z. D. Grujić and A. Weis, “Atomic magnetic resonance induced by a amplitude-, frequency-, or polarization-modulated light,” arXiv:1305.6574 [physics.atom-ph] (May2013).

E. Breschi, Z. Grujić, and A. Weis, “In-situ calibration of magnetic field coils using free-induction decay of atomic alignment,” submitted to Appl. Phys. B(2013).

E. Breschi and A. Weis, “Ground-state Hanle effect based on atomic alignment,” Phys. Rev. A86, 053427 (2012).
[CrossRef]

N. Castagna and A. Weis, “Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect,” Phys. Rev. A84, 053421 (2011).
[CrossRef]

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

Woetzel, S.

Yakobson, N. N.

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys.251, 244–251 (1996).

Yashchuk, V. V.

Zachorowski, J.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl Phys. B75, 613–619 (2002).
[CrossRef]

Zawadzki, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl Phys. B75, 613–619 (2002).
[CrossRef]

Appl Phys. B (1)

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl Phys. B75, 613–619 (2002).
[CrossRef]

Appl. Phys. B (2)

N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96, 763–772 (2009).
[CrossRef]

E. Breschi, Z. Grujić, and A. Weis, “In-situ calibration of magnetic field coils using free-induction decay of atomic alignment,” submitted to Appl. Phys. B(2013).

Appl. Phys. Lett. (1)

N. W. Gawlik, L. Krzemien, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A.O. Sushkov, and D. Budker, “Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light,” Appl. Phys. Lett.88, 131108 (2006).
[CrossRef]

Eur. Phys. J. D (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G.M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys.251, 244–251 (1996).

Opt. Express (1)

Phys. Rev. A (4)

N. Castagna and A. Weis, “Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect,” Phys. Rev. A84, 053421 (2011).
[CrossRef]

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson-Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A73, 053404 (2006).
[CrossRef]

M. Huang and J. C. Camparo, “Coherent population trapping under periodic polarization modulation: Appearance of the CPT doublet,” Phys. Rev. A85, 012509 (2012).
[CrossRef]

E. Breschi and A. Weis, “Ground-state Hanle effect based on atomic alignment,” Phys. Rev. A86, 053427 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ben-Kish and M.V. Romalis, “Dead-Zone-Free Atomic Magnetometry with Simultaneous Excitation of Orientation and Alignment Resonances,” Phys. Rev. Lett.105,193601 (2010).
[CrossRef]

W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett.6, 280–281 (1961).
[CrossRef]

Sov. Phys. Usp. (1)

E. B. Aleksandrov, “Optical manifestations of the interference of nondegenerate atomic states,” Sov. Phys. Usp.15, 436–451 (1973).
[CrossRef]

Other (1)

Z. D. Grujić and A. Weis, “Atomic magnetic resonance induced by a amplitude-, frequency-, or polarization-modulated light,” arXiv:1305.6574 [physics.atom-ph] (May2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Left: schematic principle of polarization-modulation experiment. Right: the time-symmetric polarization modulation function ξ(t) with representation of duty cycle η.

Fig. 2
Fig. 2

Block diagram of experimental apparatus. BS: beam splitter; DFB laser: distributed feedback laser; EOM: electro-optic modulator; I/V: transimpedance amplifier; LP: linear polarizer; NF: neutral density filter; MFC: magnetic field control PBS: polarizing beam splitter; PDsig and PDref: signal and reference photodiodes; PID: proportional-integral-differential feedback controller; PMF: polarization maintaining fiber.

Fig. 3
Fig. 3

Polarization modulation spectra represented as magnetic field dependence of the transmitted laser power (incident laser P0 = 1.0 μW) for different modulation duty cycles η. The insets show the theoretical spectra. Both experimental and theoretical spectra are normalized, after background subtraction, as discussed in the text.

Fig. 4
Fig. 4

Dependence of the relative resonance amplitudes on the duty cycle η for the resonances at m = ωLmod = 0 ... 5. Data were recorded with an incident laser power P0 = 1 μW (top 6 graphs, green dots) and 3 μW (bottom 6 graphs, red squares), respectively. The dots/squares represent the normalized experimental amplitudes and the solid lines show the model predictions.

Fig. 5
Fig. 5

Left: dependence of the (m = 1, η = 0.5)-resonance amplitude on the incident laser power P0. The solid squares are experimental amplitudes and the solid line is a polynomial fit. The inset is a zoom into the low power region. The dashed line represents the quadratic term of the fit. Right: Dependence of the half-width of the (m = 1, η = 0.5) resonance on laser power. The dashed line is a linear fit to the data below 6 μW.

Fig. 6
Fig. 6

Dependence of the linewidth γ/2π of the m = 0 Hanle resonances (open dots) and the m ≠ 0 resonances (solid dots) on the duty cycle η. Data taken at P0 = 1.0 μW.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P ( ω L ) = ( 1 κ 0 L ) P 0 + α κ 0 L P 0 2 P S m = g m 2 m ( ω L )
( 1 κ 0 L ) P 0 + m = A m m ( ω L ) ,
m ( ω L ) = γ 2 ( m ω mod ω L ) 2 + γ 2 ,
ξ ( t ) = m = + g m ( η ) cos ( m ω mod t ) ,
g m = 0 ( η ) = 2 η 1 and g m 0 ( η ) = 2 π sin ( π m η ) m .
R m ( η ) = A m ( η ) A 1 ( 0.5 ) = g m 2 ( η ) g 1 2 ( 0.5 ) = { [ π ( 2 η 1 ) 2 ] 2 m = 0 sin 2 ( π m η ) m 2 m 0
Δ S ¯ ( η ) P ( ω L ) P 0 = κ 0 L P 0 + m = A m ( η ) m ( ω L ) ,
( ω L ) γ 2 ( 2 ω L ) 2 + γ 2 ,

Metrics