Abstract

We demonstrate high resonant absorption of visible light with a plasmonic nanocavity chain structure fabricated through resistless nanoimprinting in metal (RNIM). The RNIM approach provides a simple, reproducible, and accurate means to fabricate metallic nanopatterns with high fidelity. The nanocavities are shown to be efficiently excited using normally incident light, and the resonant wavelength can be controlled by either the width or the depth of the cavity. Numerical simulations confirm the experimental observations, and illustrate the behavior of the nanocavity chain waveguide and insensitivity to incident angle. The resonant absorption is due to the excitation of a localized metal-insulator-metal cavity mode. The interacting surface waves allow cavity lengths on the order of ten nanometers for light having a free space wavelength of about four hundred nanometers. Coupling of the cavities with an intervening surface plasmon wave results in a collective excitation and a chain waveguide mode that should prove valuable for more sensitive detection based on surface enhanced Raman scattering.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B73, 033401 (2006).
    [CrossRef]
  2. P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
    [CrossRef]
  3. N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
    [CrossRef]
  4. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89, 211126 (2006).
    [CrossRef]
  5. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B75, 035411 (2007).
    [CrossRef]
  6. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9, 3489–3493 (2009).
    [CrossRef] [PubMed]
  7. A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011).
    [CrossRef]
  8. A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
    [CrossRef]
  9. S. Buzzi, F. Robin, V. Callegari, and J. F. Löffler, “Metal direct nanoimprinting for photonics,” Microelectron. Eng.85, 419–424 (2008).
    [CrossRef]
  10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “25-nanometer resolution,” Science272, 85–87 (1996).
    [CrossRef]
  11. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
    [CrossRef] [PubMed]
  12. A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
    [CrossRef]
  13. H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectron. Eng.83, 893–896 (2006).
    [CrossRef]
  14. L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, and M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small, http://dx.doi.org/10.1002/smll.201300168 (2013)
  15. K. J. Webb and J. Li, “Resonant slot optical guiding in metallic nanoparticle chains,” Phys. Rev. B72, 201402 (2005).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998) vol. 3.
  17. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
    [CrossRef] [PubMed]
  18. S. Shivanand, A. Ludwig, and K. J. Webb, “Impact of surface roughness on the effective dielectric constants and subwavelength image resolution of metal–insulator stack lenses,” Opt. Lett.37, 4317–4319 (2012).
    [PubMed]
  19. K. J. Webb and J. Li, “Resonant waveguide field enhancement in dimers,” Opt. Lett.31, 3348–3350 (2006).
    [CrossRef] [PubMed]
  20. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat B-Chem.54, 3–15 (1999).
    [CrossRef]
  21. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express19, 787–813 (2011).
    [CrossRef] [PubMed]
  22. H. Liu, Shivanand, and K. J. Webb, “Optical circuits from anisotropic films,” Phys. Rev. B79, 094203 (2009).
    [CrossRef]
  23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. B69, 681 (1946).
  24. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
    [CrossRef]

2013 (1)

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

2012 (2)

2011 (3)

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express19, 787–813 (2011).
[CrossRef] [PubMed]

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011).
[CrossRef]

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
[CrossRef]

2010 (1)

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
[CrossRef]

2009 (2)

H. Liu, Shivanand, and K. J. Webb, “Optical circuits from anisotropic films,” Phys. Rev. B79, 094203 (2009).
[CrossRef]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9, 3489–3493 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Buzzi, F. Robin, V. Callegari, and J. F. Löffler, “Metal direct nanoimprinting for photonics,” Microelectron. Eng.85, 419–424 (2008).
[CrossRef]

2007 (3)

N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B75, 035411 (2007).
[CrossRef]

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
[CrossRef] [PubMed]

2006 (5)

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectron. Eng.83, 893–896 (2006).
[CrossRef]

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B73, 033401 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89, 211126 (2006).
[CrossRef]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

K. J. Webb and J. Li, “Resonant waveguide field enhancement in dimers,” Opt. Lett.31, 3348–3350 (2006).
[CrossRef] [PubMed]

2005 (1)

K. J. Webb and J. Li, “Resonant slot optical guiding in metallic nanoparticle chains,” Phys. Rev. B72, 201402 (2005).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat B-Chem.54, 3–15 (1999).
[CrossRef]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “25-nanometer resolution,” Science272, 85–87 (1996).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. B69, 681 (1946).

Altug, H.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Bartal, G.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9, 3489–3493 (2009).
[CrossRef] [PubMed]

Baumberg, J. J.

N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
[CrossRef]

Blanchard, R.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
[CrossRef]

Buzzi, S.

S. Buzzi, F. Robin, V. Callegari, and J. F. Löffler, “Metal direct nanoimprinting for photonics,” Microelectron. Eng.85, 419–424 (2008).
[CrossRef]

Cabrini, S.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011).
[CrossRef]

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
[CrossRef]

Caglayan, H.

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

Callegari, V.

S. Buzzi, F. Robin, V. Callegari, and J. F. Löffler, “Metal direct nanoimprinting for photonics,” Microelectron. Eng.85, 419–424 (2008).
[CrossRef]

Canva, M.

Capasso, F.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
[CrossRef]

Charlton, M. D. B.

N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
[CrossRef]

Chen, H. L.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectron. Eng.83, 893–896 (2006).
[CrossRef]

Cheng, H. C.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectron. Eng.83, 893–896 (2006).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “25-nanometer resolution,” Science272, 85–87 (1996).
[CrossRef]

Chu, T. C.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectron. Eng.83, 893–896 (2006).
[CrossRef]

Chuang, S. Y.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectron. Eng.83, 893–896 (2006).
[CrossRef]

Dhawan, A.

Dhuey, S.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011).
[CrossRef]

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
[CrossRef]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Diroll, B. T.

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

Engheta, N.

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

Englund, D.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Fafarman, A. T.

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

Fan, L.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, and M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small, http://dx.doi.org/10.1002/smll.201300168 (2013)

Fréchet, J. M. J.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
[CrossRef] [PubMed]

García de Abajo, F. J.

N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
[CrossRef]

Gatzogiannis, E.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat B-Chem.54, 3–15 (1999).
[CrossRef]

Genevet, P.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
[CrossRef]

Grigoropoulos, C. P.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
[CrossRef] [PubMed]

Harteneck, B.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011).
[CrossRef]

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat B-Chem.54, 3–15 (1999).
[CrossRef]

Hong, S. H.

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

Kagan, C. R.

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

Kats, M. A.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
[CrossRef]

Kim, S.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, and M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small, http://dx.doi.org/10.1002/smll.201300168 (2013)

Ko, S. H.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
[CrossRef] [PubMed]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “25-nanometer resolution,” Science272, 85–87 (1996).
[CrossRef]

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89, 211126 (2006).
[CrossRef]

Li, J.

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B73, 033401 (2006).
[CrossRef]

K. J. Webb and J. Li, “Resonant waveguide field enhancement in dimers,” Opt. Lett.31, 3348–3350 (2006).
[CrossRef] [PubMed]

K. J. Webb and J. Li, “Resonant slot optical guiding in metallic nanoparticle chains,” Phys. Rev. B72, 201402 (2005).
[CrossRef]

Liang, X.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
[CrossRef]

Lin, C. H.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectron. Eng.83, 893–896 (2006).
[CrossRef]

Liu, H.

H. Liu, Shivanand, and K. J. Webb, “Optical circuits from anisotropic films,” Phys. Rev. B79, 094203 (2009).
[CrossRef]

Löffler, J. F.

S. Buzzi, F. Robin, V. Callegari, and J. F. Löffler, “Metal direct nanoimprinting for photonics,” Microelectron. Eng.85, 419–424 (2008).
[CrossRef]

Ludwig, A.

Luscombe, C. K.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
[CrossRef] [PubMed]

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89, 211126 (2006).
[CrossRef]

Murray, C. B.

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

Netti, M. C.

N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
[CrossRef]

Oulton, R. F.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9, 3489–3493 (2009).
[CrossRef] [PubMed]

Padmore, H. A.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
[CrossRef]

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011).
[CrossRef]

Paik, T.

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998) vol. 3.

Pan, H.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
[CrossRef] [PubMed]

Park, I.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
[CrossRef] [PubMed]

Perney, N. M. B.

N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
[CrossRef]

Pisano, A. P.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
[CrossRef] [PubMed]

Polyakov, A.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011).
[CrossRef]

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. B69, 681 (1946).

Qi, M.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, and M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small, http://dx.doi.org/10.1002/smll.201300168 (2013)

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “25-nanometer resolution,” Science272, 85–87 (1996).
[CrossRef]

Robin, F.

S. Buzzi, F. Robin, V. Callegari, and J. F. Löffler, “Metal direct nanoimprinting for photonics,” Microelectron. Eng.85, 419–424 (2008).
[CrossRef]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Schuck, J. P.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
[CrossRef]

Schuck, P. J.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011).
[CrossRef]

Scully, M. O.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
[CrossRef]

Shivanand,

H. Liu, Shivanand, and K. J. Webb, “Optical circuits from anisotropic films,” Phys. Rev. B79, 094203 (2009).
[CrossRef]

Shivanand, S.

Sorger, V. J.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9, 3489–3493 (2009).
[CrossRef] [PubMed]

Tang, A.

N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
[CrossRef]

Tansarawiput, C.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, and M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small, http://dx.doi.org/10.1002/smll.201300168 (2013)

Tetienne, J. P.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
[CrossRef]

Varghese, L. T.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, and M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small, http://dx.doi.org/10.1002/smll.201300168 (2013)

Vo-Dinh, T.

Vuckovic, J.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Webb, K. J.

S. Shivanand, A. Ludwig, and K. J. Webb, “Impact of surface roughness on the effective dielectric constants and subwavelength image resolution of metal–insulator stack lenses,” Opt. Lett.37, 4317–4319 (2012).
[PubMed]

H. Liu, Shivanand, and K. J. Webb, “Optical circuits from anisotropic films,” Phys. Rev. B79, 094203 (2009).
[CrossRef]

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B73, 033401 (2006).
[CrossRef]

K. J. Webb and J. Li, “Resonant waveguide field enhancement in dimers,” Opt. Lett.31, 3348–3350 (2006).
[CrossRef] [PubMed]

K. J. Webb and J. Li, “Resonant slot optical guiding in metallic nanoparticle chains,” Phys. Rev. B72, 201402 (2005).
[CrossRef]

Xuan, Y.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, and M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small, http://dx.doi.org/10.1002/smll.201300168 (2013)

Yao, J.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9, 3489–3493 (2009).
[CrossRef] [PubMed]

Ye, X.

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat B-Chem.54, 3–15 (1999).
[CrossRef]

Zhang, X.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9, 3489–3493 (2009).
[CrossRef] [PubMed]

Zoorob, M. E.

N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89, 211126 (2006).
[CrossRef]

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011).
[CrossRef]

Microelectron. Eng. (2)

S. Buzzi, F. Robin, V. Callegari, and J. F. Löffler, “Metal direct nanoimprinting for photonics,” Microelectron. Eng.85, 419–424 (2008).
[CrossRef]

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectron. Eng.83, 893–896 (2006).
[CrossRef]

Nano Lett. (4)

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9, 3489–3493 (2009).
[CrossRef] [PubMed]

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007).
[CrossRef] [PubMed]

A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013).
[CrossRef]

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010).
[CrossRef]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Nature (1)

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (6)

H. Liu, Shivanand, and K. J. Webb, “Optical circuits from anisotropic films,” Phys. Rev. B79, 094203 (2009).
[CrossRef]

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. B69, 681 (1946).

N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B75, 035411 (2007).
[CrossRef]

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B73, 033401 (2006).
[CrossRef]

K. J. Webb and J. Li, “Resonant slot optical guiding in metallic nanoparticle chains,” Phys. Rev. B72, 201402 (2005).
[CrossRef]

Science (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “25-nanometer resolution,” Science272, 85–87 (1996).
[CrossRef]

Sensor Actuat B-Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat B-Chem.54, 3–15 (1999).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998) vol. 3.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, and M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small, http://dx.doi.org/10.1002/smll.201300168 (2013)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The RNIM process: (a) patterning of HSQ resist; (b) Si dry etching with Cl2/Ar chemistry; (c) removal of HSQ by HF to form the mold; (d) contact of mold to the metal film; (e) nanoimprinting; (f) removal of the Si mold.

Fig. 2
Fig. 2

SEM results of the RNIM process. (a) A Si mold with gratings and grids. (b) Imprinted Ag film using the mold in (a). (c) Cross sectional view of a Si mold. (d) Cross sectional view of the imprinted Ag film with the mold in (c).

Fig. 3
Fig. 3

SEM images of the nanocavity array. (a) The Si mold used to generate the plasmonic nanocavity array. (b) The imprinted Ag film with trenches matching the mold dimensions shown in (a).

Fig. 4
Fig. 4

(a) Schematic for the reflectance spectrometer measurement. (b) Nanocavity chain dimensions and the four measured intensities: TM illumination on the sample (ITM,on) and off the sample (ITM,off), and TE illumination on the sample (ITE,on) and off the sample (ITE,off), all used to form the calibrated reflection Rr,exp.

Fig. 5
Fig. 5

(a) Measured and (b) simulated relative reflectivity of the plasmonic nanocavities. Referring to Fig. 4(b), the cavity gap size is G = 25 nm and the grating period is P = 100 nm. The different lines are for the various cavity depths D: 13 nm (blue), 10 nm (green), and 8 nm (red).

Fig. 6
Fig. 6

Simulated relative reflectivity for the plasmonic nanocavity array for normal incidence with gap size G = 10 nm, grating period P = 100 nm, and depths D of: 10 nm (blue), 15 nm (green), 20 nm (red), 25 nm (aqua), 30 nm (pink), 35 nm (yellow), and 40 nm (black).

Fig. 7
Fig. 7

(a) The normalized simulated |Hz(x, y)|, plotted in the neighborhood of two cavities, is shown as color contours. The spatially-dependent Poynting vector is shown by the red arrows (at the point where the arrow begins and with relative magnitude given by the arrow length). (b) Plot of the normalized |Hz(x, y = 50 nm)|, 50 nm above the metal surface, with parameters: D = 13 nm, G = 25 nm, and P = 100 nm. In both (a) and (b), the free space wavelength is λ0 = 400 nm.

Fig. 8
Fig. 8

(a) Simulated relative reflectivity for the plasmonic nanocavity array for TM light at λ0 = 500 nm as a function of incidence angle (θinc) with a gap size G = 10 nm, a grating period P = 100 nm, and a depth D = 20 nm. (b) The same calculation as (a), but as a function of excitation wavelength for different illumination angles: θinc = 0° (blue), θinc = 30° (green), and θinc = 60° (red).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R r , exp = I TM , on I TM , off I TE , off I TE , on ,

Metrics