Abstract

We show both theoretically and experimentally that frequency-shifted feedback (FSF) lasers seeded with a single frequency laser can generate Fourier transform-limited pulses with a repetition rate tunable and limited by the spectral bandwidth of the laser. We demonstrate experimentally in a FSF laser with a 150 GHz spectral bandwidth, the generation of 6 ps-duration pulses at repetition rates tunable over more than two orders of magnitude between 0.24 and 37 GHz, by steps of 80 MHz. A simple linear analytical model i.e. ignoring both dynamic and non-linear effects, is sufficient to account for the experimental results. This possibility opens new perspectives for various applications where lasers with ultra-high repetition rates are required, from THz generation to ultrafast data processing systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Stellpflug, G. Bonnet, B. W. Shore, and K. Bergmann, “Dynamics of frequency shifted feedback lasers: simulation studies,” Opt. Express11, 2060–2080 (2003).
    [CrossRef] [PubMed]
  2. F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms with repetitive phase and nonrepetitive amplitude,” Opt. Lett.27, 1965–1967 (2002).
    [CrossRef]
  3. L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Coherence in the output spectrum of frequency shifted feedback lasers,” Opt. Commun.282, 300–309 (2009).
    [CrossRef]
  4. H. Guillet de Chatellus and J.-P. Pique, “Statistical properties of frequency shifted feedback lasers,” Opt. Commun.283, 71–77 (2010).
    [CrossRef]
  5. F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms generated by frequency shifted feedback lasers: application to multiple access communications,” Opt. Commun.231, 149–164 (2004).
    [CrossRef]
  6. H. Guillet de Chatellus and J.-P. Pique, “λ/2 fringe spacing interferometer,” Opt. Lett.34, 755–757 (2009).
    [CrossRef]
  7. K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron.36, 305–316 (2000).
    [CrossRef]
  8. V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “High accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Opt. Commun.266, 266–273 (2006).
    [CrossRef]
  9. H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun.284, 4965–4970 (2011).
    [CrossRef]
  10. H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, “Heterodyne beatings between frequency-shifted feedback lasers,” Opt. Lett.37, 791–793 (2012).
    [CrossRef]
  11. S. Balle, I. C. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun.102, 166–173 (1993).
    [CrossRef]
  12. F. V. Kowalski, S. J. Shattil, and P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett.53(9), 734–736 (1988).
    [CrossRef]
  13. H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave. Technol.12, 1360–1368 (1994).
    [CrossRef]
  14. G. Bonnet, S. Balle, T. Kraft, and K. Bergmann, “Dynamics and self-modelocking of a titanium-sapphire laser with intracavity frequency shifted feedback,” Opt. Commun.123, 790–800 (1996).
    [CrossRef]
  15. J. M. Sousa and O. G. Okhotnikov, “Short pulse generation and control in Er-doped frequency-shifted-feedback fiber lasers,” Opt. Commun.183, 227–241 (2000).
    [CrossRef]
  16. M. P. Nikodem, H. Sergeant, P. Kaczmarek, and K. M. Abramski, “Actively mode-locked fiber laser using acousto-optic modulator,” Proc. SPIE7141, 71410B (2008).
    [CrossRef]
  17. M. P. Nikodem, E. Kluzniak, and K. Abramski, “Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber lasers,” Opt. Express17, 3299–3304 (2009).
    [CrossRef] [PubMed]
  18. A. M. Heidt, J. P. Burger, J.-N. Maran, and N. Traynor, “High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser,” Opt Express15, 15892–15897 (2007).
    [CrossRef] [PubMed]
  19. F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett.50, 711–713, 1987.
    [CrossRef]
  20. P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted laser: Theory and experiment,” IEEE J. Quantum Electron.26, 1845–1851 (1990).
    [CrossRef]
  21. M. W. Phillips, G. Y. Liang, and J. R. M. Barr, “Frequency comb generation and pulsed operation in a Nd:YLF laser with frequency-shifted feedback,” Opt. Commun.100, 473–478 (1993).
    [CrossRef]
  22. P. Coppin and T. G. Hodgkinson, “Novel optical frequency comb synthesis using optical feedback,” Electron. Lett.26, 28–30 (1990).
    [CrossRef]
  23. L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun.236, 183–202 (2004).
    [CrossRef]
  24. V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental Characterization of an Yb3+-doped Fiber Ring Laser with Frequency-shifted Feedback,” Opt. Commun.266, 627–637 (2006).
    [CrossRef]
  25. H. Y Ryu, H. S. Moon, and H. S. Suh, “Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding,” Opt. Express25, 11396–11401 (2007).
    [CrossRef]
  26. M. Nikodem and K. Abramski, “Controlling the frequency of the frequency shifted feedback fiber laser using injection-seeding technique,” Opt. Commun.283, 2202–2205 (2010).
    [CrossRef]
  27. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt.43, 2139–2164 (1996).
    [CrossRef]

2012 (1)

2011 (1)

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun.284, 4965–4970 (2011).
[CrossRef]

2010 (2)

H. Guillet de Chatellus and J.-P. Pique, “Statistical properties of frequency shifted feedback lasers,” Opt. Commun.283, 71–77 (2010).
[CrossRef]

M. Nikodem and K. Abramski, “Controlling the frequency of the frequency shifted feedback fiber laser using injection-seeding technique,” Opt. Commun.283, 2202–2205 (2010).
[CrossRef]

2009 (3)

2008 (1)

M. P. Nikodem, H. Sergeant, P. Kaczmarek, and K. M. Abramski, “Actively mode-locked fiber laser using acousto-optic modulator,” Proc. SPIE7141, 71410B (2008).
[CrossRef]

2007 (2)

H. Y Ryu, H. S. Moon, and H. S. Suh, “Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding,” Opt. Express25, 11396–11401 (2007).
[CrossRef]

A. M. Heidt, J. P. Burger, J.-N. Maran, and N. Traynor, “High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser,” Opt Express15, 15892–15897 (2007).
[CrossRef] [PubMed]

2006 (2)

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “High accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Opt. Commun.266, 266–273 (2006).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental Characterization of an Yb3+-doped Fiber Ring Laser with Frequency-shifted Feedback,” Opt. Commun.266, 627–637 (2006).
[CrossRef]

2004 (2)

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun.236, 183–202 (2004).
[CrossRef]

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms generated by frequency shifted feedback lasers: application to multiple access communications,” Opt. Commun.231, 149–164 (2004).
[CrossRef]

2003 (1)

2002 (1)

2000 (2)

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron.36, 305–316 (2000).
[CrossRef]

J. M. Sousa and O. G. Okhotnikov, “Short pulse generation and control in Er-doped frequency-shifted-feedback fiber lasers,” Opt. Commun.183, 227–241 (2000).
[CrossRef]

1996 (2)

G. Bonnet, S. Balle, T. Kraft, and K. Bergmann, “Dynamics and self-modelocking of a titanium-sapphire laser with intracavity frequency shifted feedback,” Opt. Commun.123, 790–800 (1996).
[CrossRef]

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt.43, 2139–2164 (1996).
[CrossRef]

1994 (1)

H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave. Technol.12, 1360–1368 (1994).
[CrossRef]

1993 (2)

S. Balle, I. C. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun.102, 166–173 (1993).
[CrossRef]

M. W. Phillips, G. Y. Liang, and J. R. M. Barr, “Frequency comb generation and pulsed operation in a Nd:YLF laser with frequency-shifted feedback,” Opt. Commun.100, 473–478 (1993).
[CrossRef]

1990 (2)

P. Coppin and T. G. Hodgkinson, “Novel optical frequency comb synthesis using optical feedback,” Electron. Lett.26, 28–30 (1990).
[CrossRef]

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted laser: Theory and experiment,” IEEE J. Quantum Electron.26, 1845–1851 (1990).
[CrossRef]

1988 (1)

F. V. Kowalski, S. J. Shattil, and P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett.53(9), 734–736 (1988).
[CrossRef]

1987 (1)

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett.50, 711–713, 1987.
[CrossRef]

Abramski, K.

M. Nikodem and K. Abramski, “Controlling the frequency of the frequency shifted feedback fiber laser using injection-seeding technique,” Opt. Commun.283, 2202–2205 (2010).
[CrossRef]

M. P. Nikodem, E. Kluzniak, and K. Abramski, “Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber lasers,” Opt. Express17, 3299–3304 (2009).
[CrossRef] [PubMed]

Abramski, K. M.

M. P. Nikodem, H. Sergeant, P. Kaczmarek, and K. M. Abramski, “Actively mode-locked fiber laser using acousto-optic modulator,” Proc. SPIE7141, 71410B (2008).
[CrossRef]

Balle, S.

G. Bonnet, S. Balle, T. Kraft, and K. Bergmann, “Dynamics and self-modelocking of a titanium-sapphire laser with intracavity frequency shifted feedback,” Opt. Commun.123, 790–800 (1996).
[CrossRef]

S. Balle, I. C. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun.102, 166–173 (1993).
[CrossRef]

Barr, J. R. M.

M. W. Phillips, G. Y. Liang, and J. R. M. Barr, “Frequency comb generation and pulsed operation in a Nd:YLF laser with frequency-shifted feedback,” Opt. Commun.100, 473–478 (1993).
[CrossRef]

Bergmann, K.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Coherence in the output spectrum of frequency shifted feedback lasers,” Opt. Commun.282, 300–309 (2009).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “High accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Opt. Commun.266, 266–273 (2006).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental Characterization of an Yb3+-doped Fiber Ring Laser with Frequency-shifted Feedback,” Opt. Commun.266, 627–637 (2006).
[CrossRef]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun.236, 183–202 (2004).
[CrossRef]

M. Stellpflug, G. Bonnet, B. W. Shore, and K. Bergmann, “Dynamics of frequency shifted feedback lasers: simulation studies,” Opt. Express11, 2060–2080 (2003).
[CrossRef] [PubMed]

G. Bonnet, S. Balle, T. Kraft, and K. Bergmann, “Dynamics and self-modelocking of a titanium-sapphire laser with intracavity frequency shifted feedback,” Opt. Commun.123, 790–800 (1996).
[CrossRef]

S. Balle, I. C. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun.102, 166–173 (1993).
[CrossRef]

Berry, M. V.

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt.43, 2139–2164 (1996).
[CrossRef]

Bonnet, G.

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “High accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Opt. Commun.266, 266–273 (2006).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental Characterization of an Yb3+-doped Fiber Ring Laser with Frequency-shifted Feedback,” Opt. Commun.266, 627–637 (2006).
[CrossRef]

M. Stellpflug, G. Bonnet, B. W. Shore, and K. Bergmann, “Dynamics of frequency shifted feedback lasers: simulation studies,” Opt. Express11, 2060–2080 (2003).
[CrossRef] [PubMed]

G. Bonnet, S. Balle, T. Kraft, and K. Bergmann, “Dynamics and self-modelocking of a titanium-sapphire laser with intracavity frequency shifted feedback,” Opt. Commun.123, 790–800 (1996).
[CrossRef]

Brinkmeyer, E.

H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave. Technol.12, 1360–1368 (1994).
[CrossRef]

Burger, J. P.

A. M. Heidt, J. P. Burger, J.-N. Maran, and N. Traynor, “High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser,” Opt Express15, 15892–15897 (2007).
[CrossRef] [PubMed]

Coppin, P.

P. Coppin and T. G. Hodgkinson, “Novel optical frequency comb synthesis using optical feedback,” Electron. Lett.26, 28–30 (1990).
[CrossRef]

Glastre, W.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, “Heterodyne beatings between frequency-shifted feedback lasers,” Opt. Lett.37, 791–793 (2012).
[CrossRef]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun.284, 4965–4970 (2011).
[CrossRef]

Guillet de Chatellus, H.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, “Heterodyne beatings between frequency-shifted feedback lasers,” Opt. Lett.37, 791–793 (2012).
[CrossRef]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun.284, 4965–4970 (2011).
[CrossRef]

H. Guillet de Chatellus and J.-P. Pique, “Statistical properties of frequency shifted feedback lasers,” Opt. Commun.283, 71–77 (2010).
[CrossRef]

H. Guillet de Chatellus and J.-P. Pique, “λ/2 fringe spacing interferometer,” Opt. Lett.34, 755–757 (2009).
[CrossRef]

Hale, P. D.

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted laser: Theory and experiment,” IEEE J. Quantum Electron.26, 1845–1851 (1990).
[CrossRef]

F. V. Kowalski, S. J. Shattil, and P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett.53(9), 734–736 (1988).
[CrossRef]

Hara, T.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron.36, 305–316 (2000).
[CrossRef]

Heidt, A. M.

A. M. Heidt, J. P. Burger, J.-N. Maran, and N. Traynor, “High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser,” Opt Express15, 15892–15897 (2007).
[CrossRef] [PubMed]

Hodgkinson, T. G.

P. Coppin and T. G. Hodgkinson, “Novel optical frequency comb synthesis using optical feedback,” Electron. Lett.26, 28–30 (1990).
[CrossRef]

Hugon, O.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, “Heterodyne beatings between frequency-shifted feedback lasers,” Opt. Lett.37, 791–793 (2012).
[CrossRef]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun.284, 4965–4970 (2011).
[CrossRef]

Ito, H.

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms generated by frequency shifted feedback lasers: application to multiple access communications,” Opt. Commun.231, 149–164 (2004).
[CrossRef]

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms with repetitive phase and nonrepetitive amplitude,” Opt. Lett.27, 1965–1967 (2002).
[CrossRef]

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron.36, 305–316 (2000).
[CrossRef]

Jacquin, O.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, “Heterodyne beatings between frequency-shifted feedback lasers,” Opt. Lett.37, 791–793 (2012).
[CrossRef]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun.284, 4965–4970 (2011).
[CrossRef]

Kaczmarek, P.

M. P. Nikodem, H. Sergeant, P. Kaczmarek, and K. M. Abramski, “Actively mode-locked fiber laser using acousto-optic modulator,” Proc. SPIE7141, 71410B (2008).
[CrossRef]

Khodakovskyy, V. M.

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental Characterization of an Yb3+-doped Fiber Ring Laser with Frequency-shifted Feedback,” Opt. Commun.266, 627–637 (2006).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “High accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Opt. Commun.266, 266–273 (2006).
[CrossRef]

Klein, S.

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt.43, 2139–2164 (1996).
[CrossRef]

Kluzniak, E.

Kowalski, F. V.

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms generated by frequency shifted feedback lasers: application to multiple access communications,” Opt. Commun.231, 149–164 (2004).
[CrossRef]

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms with repetitive phase and nonrepetitive amplitude,” Opt. Lett.27, 1965–1967 (2002).
[CrossRef]

S. Balle, I. C. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun.102, 166–173 (1993).
[CrossRef]

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted laser: Theory and experiment,” IEEE J. Quantum Electron.26, 1845–1851 (1990).
[CrossRef]

F. V. Kowalski, S. J. Shattil, and P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett.53(9), 734–736 (1988).
[CrossRef]

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett.50, 711–713, 1987.
[CrossRef]

Kraft, T.

G. Bonnet, S. Balle, T. Kraft, and K. Bergmann, “Dynamics and self-modelocking of a titanium-sapphire laser with intracavity frequency shifted feedback,” Opt. Commun.123, 790–800 (1996).
[CrossRef]

Lacot, E.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, “Heterodyne beatings between frequency-shifted feedback lasers,” Opt. Lett.37, 791–793 (2012).
[CrossRef]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun.284, 4965–4970 (2011).
[CrossRef]

Liang, G. Y.

M. W. Phillips, G. Y. Liang, and J. R. M. Barr, “Frequency comb generation and pulsed operation in a Nd:YLF laser with frequency-shifted feedback,” Opt. Commun.100, 473–478 (1993).
[CrossRef]

Littler, I. C.

S. Balle, I. C. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun.102, 166–173 (1993).
[CrossRef]

Maran, J.-N.

A. M. Heidt, J. P. Burger, J.-N. Maran, and N. Traynor, “High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser,” Opt Express15, 15892–15897 (2007).
[CrossRef] [PubMed]

Miyahara, T.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron.36, 305–316 (2000).
[CrossRef]

Moon, H. S.

H. Y Ryu, H. S. Moon, and H. S. Suh, “Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding,” Opt. Express25, 11396–11401 (2007).
[CrossRef]

Nakamura, K.

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms generated by frequency shifted feedback lasers: application to multiple access communications,” Opt. Commun.231, 149–164 (2004).
[CrossRef]

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms with repetitive phase and nonrepetitive amplitude,” Opt. Lett.27, 1965–1967 (2002).
[CrossRef]

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron.36, 305–316 (2000).
[CrossRef]

Ndiaye, C.

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms generated by frequency shifted feedback lasers: application to multiple access communications,” Opt. Commun.231, 149–164 (2004).
[CrossRef]

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms with repetitive phase and nonrepetitive amplitude,” Opt. Lett.27, 1965–1967 (2002).
[CrossRef]

Nikodem, M.

M. Nikodem and K. Abramski, “Controlling the frequency of the frequency shifted feedback fiber laser using injection-seeding technique,” Opt. Commun.283, 2202–2205 (2010).
[CrossRef]

Nikodem, M. P.

M. P. Nikodem, E. Kluzniak, and K. Abramski, “Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber lasers,” Opt. Express17, 3299–3304 (2009).
[CrossRef] [PubMed]

M. P. Nikodem, H. Sergeant, P. Kaczmarek, and K. M. Abramski, “Actively mode-locked fiber laser using acousto-optic modulator,” Proc. SPIE7141, 71410B (2008).
[CrossRef]

Ogurtsov, V. V.

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental Characterization of an Yb3+-doped Fiber Ring Laser with Frequency-shifted Feedback,” Opt. Commun.266, 627–637 (2006).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “High accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Opt. Commun.266, 266–273 (2006).
[CrossRef]

Okhotnikov, O. G.

J. M. Sousa and O. G. Okhotnikov, “Short pulse generation and control in Er-doped frequency-shifted-feedback fiber lasers,” Opt. Commun.183, 227–241 (2000).
[CrossRef]

Phillips, M. W.

M. W. Phillips, G. Y. Liang, and J. R. M. Barr, “Frequency comb generation and pulsed operation in a Nd:YLF laser with frequency-shifted feedback,” Opt. Commun.100, 473–478 (1993).
[CrossRef]

Pinckney, J. T.

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett.50, 711–713, 1987.
[CrossRef]

Pique, J.-P.

H. Guillet de Chatellus and J.-P. Pique, “Statistical properties of frequency shifted feedback lasers,” Opt. Commun.283, 71–77 (2010).
[CrossRef]

H. Guillet de Chatellus and J.-P. Pique, “λ/2 fringe spacing interferometer,” Opt. Lett.34, 755–757 (2009).
[CrossRef]

Ryu, H. Y

H. Y Ryu, H. S. Moon, and H. S. Suh, “Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding,” Opt. Express25, 11396–11401 (2007).
[CrossRef]

Sabert, H.

H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave. Technol.12, 1360–1368 (1994).
[CrossRef]

Sergeant, H.

M. P. Nikodem, H. Sergeant, P. Kaczmarek, and K. M. Abramski, “Actively mode-locked fiber laser using acousto-optic modulator,” Proc. SPIE7141, 71410B (2008).
[CrossRef]

Shattil, S. J.

F. V. Kowalski, S. J. Shattil, and P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett.53(9), 734–736 (1988).
[CrossRef]

Shore, B. W.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Coherence in the output spectrum of frequency shifted feedback lasers,” Opt. Commun.282, 300–309 (2009).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “High accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Opt. Commun.266, 266–273 (2006).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental Characterization of an Yb3+-doped Fiber Ring Laser with Frequency-shifted Feedback,” Opt. Commun.266, 627–637 (2006).
[CrossRef]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun.236, 183–202 (2004).
[CrossRef]

M. Stellpflug, G. Bonnet, B. W. Shore, and K. Bergmann, “Dynamics of frequency shifted feedback lasers: simulation studies,” Opt. Express11, 2060–2080 (2003).
[CrossRef] [PubMed]

Sousa, J. M.

J. M. Sousa and O. G. Okhotnikov, “Short pulse generation and control in Er-doped frequency-shifted-feedback fiber lasers,” Opt. Commun.183, 227–241 (2000).
[CrossRef]

Squier, J. A.

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett.50, 711–713, 1987.
[CrossRef]

Stellpflug, M.

Suh, H. S.

H. Y Ryu, H. S. Moon, and H. S. Suh, “Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding,” Opt. Express25, 11396–11401 (2007).
[CrossRef]

Traynor, N.

A. M. Heidt, J. P. Burger, J.-N. Maran, and N. Traynor, “High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser,” Opt Express15, 15892–15897 (2007).
[CrossRef] [PubMed]

Yatsenko, L. P.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Coherence in the output spectrum of frequency shifted feedback lasers,” Opt. Commun.282, 300–309 (2009).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “High accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Opt. Commun.266, 266–273 (2006).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental Characterization of an Yb3+-doped Fiber Ring Laser with Frequency-shifted Feedback,” Opt. Commun.266, 627–637 (2006).
[CrossRef]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun.236, 183–202 (2004).
[CrossRef]

Yoshida, M.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron.36, 305–316 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

F. V. Kowalski, S. J. Shattil, and P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett.53(9), 734–736 (1988).
[CrossRef]

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett.50, 711–713, 1987.
[CrossRef]

Electron. Lett. (1)

P. Coppin and T. G. Hodgkinson, “Novel optical frequency comb synthesis using optical feedback,” Electron. Lett.26, 28–30 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted laser: Theory and experiment,” IEEE J. Quantum Electron.26, 1845–1851 (1990).
[CrossRef]

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron.36, 305–316 (2000).
[CrossRef]

J. Lightwave. Technol. (1)

H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave. Technol.12, 1360–1368 (1994).
[CrossRef]

J. Mod. Opt. (1)

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt.43, 2139–2164 (1996).
[CrossRef]

Opt Express (1)

A. M. Heidt, J. P. Burger, J.-N. Maran, and N. Traynor, “High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser,” Opt Express15, 15892–15897 (2007).
[CrossRef] [PubMed]

Opt. Commun. (12)

M. Nikodem and K. Abramski, “Controlling the frequency of the frequency shifted feedback fiber laser using injection-seeding technique,” Opt. Commun.283, 2202–2205 (2010).
[CrossRef]

M. W. Phillips, G. Y. Liang, and J. R. M. Barr, “Frequency comb generation and pulsed operation in a Nd:YLF laser with frequency-shifted feedback,” Opt. Commun.100, 473–478 (1993).
[CrossRef]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun.236, 183–202 (2004).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental Characterization of an Yb3+-doped Fiber Ring Laser with Frequency-shifted Feedback,” Opt. Commun.266, 627–637 (2006).
[CrossRef]

G. Bonnet, S. Balle, T. Kraft, and K. Bergmann, “Dynamics and self-modelocking of a titanium-sapphire laser with intracavity frequency shifted feedback,” Opt. Commun.123, 790–800 (1996).
[CrossRef]

J. M. Sousa and O. G. Okhotnikov, “Short pulse generation and control in Er-doped frequency-shifted-feedback fiber lasers,” Opt. Commun.183, 227–241 (2000).
[CrossRef]

S. Balle, I. C. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun.102, 166–173 (1993).
[CrossRef]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “High accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Opt. Commun.266, 266–273 (2006).
[CrossRef]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun.284, 4965–4970 (2011).
[CrossRef]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Coherence in the output spectrum of frequency shifted feedback lasers,” Opt. Commun.282, 300–309 (2009).
[CrossRef]

H. Guillet de Chatellus and J.-P. Pique, “Statistical properties of frequency shifted feedback lasers,” Opt. Commun.283, 71–77 (2010).
[CrossRef]

F. V. Kowalski, C. Ndiaye, K. Nakamura, and H. Ito, “Noise waveforms generated by frequency shifted feedback lasers: application to multiple access communications,” Opt. Commun.231, 149–164 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

M. P. Nikodem, H. Sergeant, P. Kaczmarek, and K. M. Abramski, “Actively mode-locked fiber laser using acousto-optic modulator,” Proc. SPIE7141, 71410B (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Top left: sketch of a generic (linear) FSF laser. The FSF cavity is injected through a leak of the AOFS. The AOFS is driven at frequency fAO. The laser mode is diffracted by the traveling acoustic wave onto the +1 order and frequency-shifted by fAO, resulting in a frequency shift per roundtrip equal to fs = ωs/2π = 2 fAO. The cavity roundtrip time is τc = 1 / fc. Top right: optical spectrum of the output of the FSF laser seeded by a monochromatic wave at angular frequency ω0. The envelope of the spectrum of the FSF frequency comb is the function g (see text). Bottom: when fs/fc = p/q the FSF cavity transforms a CW seed laser field into a pulsed one with a repetition rate equal to qfs (see text).

Fig. 2
Fig. 2

Experimental setup to characterize the pulsing output and the intensity fluctuations of the seeded FSF laser. AOM is the acousto-optics frequency shifter, SM denotes the seeding single mode laser, BS is a beamsplitter, PD and PMT are respectively the fast photodiode and the photomultiplier tube, TS1 and TS2 are translation stages and MI stands for Michelson interferometer. OC is the output coupler of the FSF laser.

Fig. 3
Fig. 3

Optical spectrum of the FSF laser with and without injection. The frequency of the injection laser corresponds to the large peak on the left wing on the spectrum.

Fig. 4
Fig. 4

Intensity spectra of the seeded FSF laser recorded for different values of the cavity free spectral range. fs is kept equal to 80 MHz. Top left and top right: for comparison, intensity spectrum of the FSF laser without injection (”modeless” regime). Center and bottom plots: intensity spectra of the CW injection-seeded FSF laser for different values of fc. fs/fc is set as the ratio of two coprime integers p/q. The principal beat notes correspond to common multiples of fs and fc.

Fig. 5
Fig. 5

Interferometric autocorrelation traces recorded for different values of (p, q). By adjusting the position of the output coupler (TS2), the cavity free spectral range is tuned to 256.33 MHz, 256.22 MHz and 256.17 MHz from left to right and the repetition rates are 12.56 GHz, 36.64 GHz and 46.88 GHz respectively. The time duration of the peaks is about 6 ps, corresponding to the inverse of the spectral bandwidth of the laser (150 GHz).

Fig. 6
Fig. 6

Intensity fluctuations of the seeded FSF laser with the cavity length measured by SHG (linear scale). The spectral bandwidth of the laser is equal to about 3 GHz (grey plot, shifted vertically for clarity) or 150 GHz (black plots). The red curve is a theoretical plot taking into account a spectral profile defined as g(n) = 0.975n corresponding to a spectral bandwidth of Δω = −ωs/ ln(0.975) equal to 3 GHz. The peaks are labeled by the corresponding value of p/q (in red).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 [ g ( 0 ) e i ω 0 t + g ( 1 ) e i ( ω 0 + ω s ) t + i ϕ 1 + g ( 2 ) e i ( ω 0 + 2 ω s ) t + i ϕ 2 + g ( 3 ) e i ( ω 0 + 3 ω s ) t + i ϕ 3 + ]
E ( t ) = E 0 e i ω 0 t n g ( n ) e i n ω s t e i n ω 0 τ c e i n ( n + 1 ) 2 ϕ
I ( t ) = I 0 n , m g ( n ) g ( m ) e i ( n m ) ( ω s t ω 0 τ c m ϕ ) e i ( n m ) ( n m + 1 ) 2 ϕ
I ( t ) = I 0 k e i k ( ω s t ω 0 τ c ) e i k ( k + 1 ) 2 ϕ m g ( k + m ) g ( m ) e i k m ϕ .
2 2 N < k ϕ [ 2 π ] < 2 2 N
I ( t ) = I 0 k G ( k q ) e i k q ( ω s t ω 0 τ c ) e i π p k ( k q + 1 )
I ( t ) = I 0 k G ( k q ) e i k q ( ω s t ω 0 τ c )
I ( t ) = I 0 k G ( k q ) ( 1 ) k e i k q ( ω s t ω 0 τ c ) .
I M L ( t ) = I 0 k G ( k ) e i k ω s t
W ( ϕ ) = < I 2 ( t ) > < I ( t ) > 2 ( ϕ )

Metrics