Abstract

We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
    [CrossRef] [PubMed]
  2. I. I. Smolyaninov, “Vacuum in a Strong Magnetic Field as a Hyperbolic Metamaterial,” Phys. Rev. Lett.107, 253903 (2011).
    [CrossRef]
  3. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).
    [CrossRef] [PubMed]
  4. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).
  5. A. N. Poddubny, P. A. Belov, G. V. Naik, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84, 023807 (2011).
    [CrossRef]
  6. T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011).
    [CrossRef]
  7. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009).
    [CrossRef]
  8. P. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
    [CrossRef]
  9. B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
    [CrossRef]
  10. X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B75, 045103 (2007).
    [CrossRef]
  11. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
    [CrossRef]
  12. Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8427–8256 (2006).
    [CrossRef]
  13. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
    [CrossRef] [PubMed]
  14. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express17, 14851–14864 (2009).
    [CrossRef] [PubMed]
  15. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).
    [CrossRef]
  16. J. Elser, V. Podolksiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
  17. A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
    [CrossRef]
  18. A. Chebykin, A. Orlov, C. Simovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B86, 115420 (2012).
    [CrossRef]
  19. L. Shen, T. Yang, and Y. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B77, 205124 (2008).
    [CrossRef]
  20. L. Shen, T. Yang, and Y. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabo-lalike dispersion,” Appl. Phys. Lett.90, 251909 (2007).
    [CrossRef]
  21. F. Bloch, “Bremsvermögen von Atomen mit mehreren Elektronen,” Z. Phys. A81, 363–376 (1933).
  22. A. D. Boardman, Electromagnetic Surface Modes (John Wiley and Sons, Chichester, 1982).
  23. W. L. Mochán, M. Castillo-Mussot, and R. G. Barrera, “Effect of plasma waves on the optical properties of metal-insulator superlattices,” Phys. Rev. B15, 1088–1098 (1987).
    [CrossRef]
  24. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C115, 19470–19475 (2011).
    [CrossRef]
  25. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112, 17983–17987 (2008).
    [CrossRef]
  26. S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011).
    [CrossRef]
  27. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
    [CrossRef] [PubMed]
  28. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
    [CrossRef] [PubMed]
  29. S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
    [CrossRef]
  30. G. Toscano, S. Raza, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express13, 4176–4188 (2012).
    [CrossRef]
  31. G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett.37, 2538–2540 (2012).
    [CrossRef] [PubMed]
  32. A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012).
    [CrossRef] [PubMed]
  33. W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B86, 205429 (2012).
    [CrossRef]
  34. P. Jewsbury, “Electrodynamic boundary conditions at metal interfaces,” J. Phys. F: Met. Phys.11, 195–206 (1981).
    [CrossRef]
  35. R. C. Monreal, T. J. Antosiewicz, and S. P. Apell, “Plasmons do not go that quantum,” arXiv:1304.3023 (2013).
  36. L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013).
    [CrossRef]
  37. T. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlocal effects in coupled nanowire dimer,” arXiv:1302.3339 (2013).
  38. K. Andersen, K. L. Jensen, and K. S. Thygesen, “Hybridization of quantum plasmon modes in coupled nanowires: From the classical to the tunneling regime,” arXiv:1304.4754 (2013).
  39. N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013).
    [CrossRef] [PubMed]

2013

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

R. C. Monreal, T. J. Antosiewicz, and S. P. Apell, “Plasmons do not go that quantum,” arXiv:1304.3023 (2013).

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013).
[CrossRef]

T. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlocal effects in coupled nanowire dimer,” arXiv:1302.3339 (2013).

K. Andersen, K. L. Jensen, and K. S. Thygesen, “Hybridization of quantum plasmon modes in coupled nanowires: From the classical to the tunneling regime,” arXiv:1304.4754 (2013).

N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013).
[CrossRef] [PubMed]

2012

G. Toscano, S. Raza, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express13, 4176–4188 (2012).
[CrossRef]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett.37, 2538–2540 (2012).
[CrossRef] [PubMed]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012).
[CrossRef] [PubMed]

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B86, 205429 (2012).
[CrossRef]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).
[CrossRef]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

A. Chebykin, A. Orlov, C. Simovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B86, 115420 (2012).
[CrossRef]

2011

I. I. Smolyaninov, “Vacuum in a Strong Magnetic Field as a Hyperbolic Metamaterial,” Phys. Rev. Lett.107, 253903 (2011).
[CrossRef]

A. N. Poddubny, P. A. Belov, G. V. Naik, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84, 023807 (2011).
[CrossRef]

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011).
[CrossRef]

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C115, 19470–19475 (2011).
[CrossRef]

A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011).
[CrossRef]

2009

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009).
[CrossRef]

M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express17, 14851–14864 (2009).
[CrossRef] [PubMed]

2008

L. Shen, T. Yang, and Y. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B77, 205124 (2008).
[CrossRef]

F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112, 17983–17987 (2008).
[CrossRef]

2007

L. Shen, T. Yang, and Y. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabo-lalike dispersion,” Appl. Phys. Lett.90, 251909 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B75, 045103 (2007).
[CrossRef]

2006

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
[CrossRef]

Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8427–8256 (2006).
[CrossRef]

P. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

2003

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
[CrossRef] [PubMed]

1987

W. L. Mochán, M. Castillo-Mussot, and R. G. Barrera, “Effect of plasma waves on the optical properties of metal-insulator superlattices,” Phys. Rev. B15, 1088–1098 (1987).
[CrossRef]

1981

P. Jewsbury, “Electrodynamic boundary conditions at metal interfaces,” J. Phys. F: Met. Phys.11, 195–206 (1981).
[CrossRef]

1933

F. Bloch, “Bremsvermögen von Atomen mit mehreren Elektronen,” Z. Phys. A81, 363–376 (1933).

1911

J. Elser, V. Podolksiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).

1811

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

Aizpurua, J.

T. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlocal effects in coupled nanowire dimer,” arXiv:1302.3339 (2013).

Alekseyev, L.

Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8427–8256 (2006).
[CrossRef]

Andersen, K.

K. Andersen, K. L. Jensen, and K. S. Thygesen, “Hybridization of quantum plasmon modes in coupled nanowires: From the classical to the tunneling regime,” arXiv:1304.4754 (2013).

Antosiewicz, T. J.

R. C. Monreal, T. J. Antosiewicz, and S. P. Apell, “Plasmons do not go that quantum,” arXiv:1304.3023 (2013).

Apell, S. P.

R. C. Monreal, T. J. Antosiewicz, and S. P. Apell, “Plasmons do not go that quantum,” arXiv:1304.3023 (2013).

Avrutsky, I.

J. Elser, V. Podolksiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).

Barnakov, Y. A.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009).
[CrossRef]

Barrera, R. G.

W. L. Mochán, M. Castillo-Mussot, and R. G. Barrera, “Effect of plasma waves on the optical properties of metal-insulator superlattices,” Phys. Rev. B15, 1088–1098 (1987).
[CrossRef]

Belov, P.

A. Chebykin, A. Orlov, C. Simovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B86, 115420 (2012).
[CrossRef]

A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

P. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

Belov, P. A.

A. N. Poddubny, P. A. Belov, G. V. Naik, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84, 023807 (2011).
[CrossRef]

Black, P.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011).
[CrossRef]

Bloch, F.

F. Bloch, “Bremsvermögen von Atomen mit mehreren Elektronen,” Z. Phys. A81, 363–376 (1933).

Boardman, A. D.

A. D. Boardman, Electromagnetic Surface Modes (John Wiley and Sons, Chichester, 1982).

Bonner, C. E.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011).
[CrossRef]

Borisov, A. G.

T. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlocal effects in coupled nanowire dimer,” arXiv:1302.3339 (2013).

Bozhevolnyi, S. I.

Burrows, A.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

Carrilero, A.

N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013).
[CrossRef] [PubMed]

Castillo-Mussot, M.

W. L. Mochán, M. Castillo-Mussot, and R. G. Barrera, “Effect of plasma waves on the optical properties of metal-insulator superlattices,” Phys. Rev. B15, 1088–1098 (1987).
[CrossRef]

Chau, Y.

L. Shen, T. Yang, and Y. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B77, 205124 (2008).
[CrossRef]

L. Shen, T. Yang, and Y. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabo-lalike dispersion,” Appl. Phys. Lett.90, 251909 (2007).
[CrossRef]

Chebykin, A.

A. Chebykin, A. Orlov, C. Simovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B86, 115420 (2012).
[CrossRef]

A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

Chen, T. L.

N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013).
[CrossRef] [PubMed]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

Cortes, C. L.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).
[CrossRef]

David, C.

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C115, 19470–19475 (2011).
[CrossRef]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Elser, J.

J. Elser, V. Podolksiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
[CrossRef]

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012).
[CrossRef] [PubMed]

Fischer, S. V.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

Formica, N.

N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013).
[CrossRef] [PubMed]

García de Abajo, F. J.

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C115, 19470–19475 (2011).
[CrossRef]

F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112, 17983–17987 (2008).
[CrossRef]

García-González, P.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013).
[CrossRef]

García-Vidal, F. J.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013).
[CrossRef]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012).
[CrossRef] [PubMed]

Ghosh, D. S.

N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013).
[CrossRef] [PubMed]

Hao, Y.

P. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

He, S.

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B75, 045103 (2007).
[CrossRef]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).
[CrossRef]

Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8427–8256 (2006).
[CrossRef]

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

Jauho, A.-P.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

G. Toscano, S. Raza, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express13, 4176–4188 (2012).
[CrossRef]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett.37, 2538–2540 (2012).
[CrossRef] [PubMed]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011).
[CrossRef]

Jensen, K. L.

K. Andersen, K. L. Jensen, and K. S. Thygesen, “Hybridization of quantum plasmon modes in coupled nanowires: From the classical to the tunneling regime,” arXiv:1304.4754 (2013).

Jewsbury, P.

P. Jewsbury, “Electrodynamic boundary conditions at metal interfaces,” J. Phys. F: Met. Phys.11, 195–206 (1981).
[CrossRef]

Jin, Y.

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B75, 045103 (2007).
[CrossRef]

Kadkhodazadeh, S.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

Kivshar, Y. S.

A. Chebykin, A. Orlov, C. Simovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B86, 115420 (2012).
[CrossRef]

A. N. Poddubny, P. A. Belov, G. V. Naik, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84, 023807 (2011).
[CrossRef]

A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Kostesha, N.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

Li, H.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009).
[CrossRef]

Li, X.

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B75, 045103 (2007).
[CrossRef]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012).
[CrossRef] [PubMed]

Maslovski, S.

A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Mochán, W. L.

W. L. Mochán, M. Castillo-Mussot, and R. G. Barrera, “Effect of plasma waves on the optical properties of metal-insulator superlattices,” Phys. Rev. B15, 1088–1098 (1987).
[CrossRef]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

Molesky, S.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).
[CrossRef]

Monreal, R. C.

R. C. Monreal, T. J. Antosiewicz, and S. P. Apell, “Plasmons do not go that quantum,” arXiv:1304.3023 (2013).

Mortensen, N. A.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B86, 205429 (2012).
[CrossRef]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett.37, 2538–2540 (2012).
[CrossRef] [PubMed]

G. Toscano, S. Raza, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express13, 4176–4188 (2012).
[CrossRef]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011).
[CrossRef]

M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express17, 14851–14864 (2009).
[CrossRef] [PubMed]

Naik, G. V.

A. N. Poddubny, P. A. Belov, G. V. Naik, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84, 023807 (2011).
[CrossRef]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8427–8256 (2006).
[CrossRef]

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

Narimanov, E. E.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009).
[CrossRef]

Newman, W.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).
[CrossRef]

Noginov, M. A.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009).
[CrossRef]

Nordlander, P.

T. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlocal effects in coupled nanowire dimer,” arXiv:1302.3339 (2013).

Orlov, A.

A. Chebykin, A. Orlov, C. Simovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B86, 115420 (2012).
[CrossRef]

A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

Pendry, J.

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012).
[CrossRef] [PubMed]

Poddubny, A. N.

A. N. Poddubny, P. A. Belov, G. V. Naik, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84, 023807 (2011).
[CrossRef]

Podolksiy, V.

J. Elser, V. Podolksiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).

Pruneri, V.

N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013).
[CrossRef] [PubMed]

Raza, S.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett.37, 2538–2540 (2012).
[CrossRef] [PubMed]

G. Toscano, S. Raza, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express13, 4176–4188 (2012).
[CrossRef]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011).
[CrossRef]

Rubio, A.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013).
[CrossRef]

Salakhutdinov, I.

J. Elser, V. Podolksiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
[CrossRef]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
[CrossRef] [PubMed]

Shen, L.

L. Shen, T. Yang, and Y. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B77, 205124 (2008).
[CrossRef]

L. Shen, T. Yang, and Y. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabo-lalike dispersion,” Appl. Phys. Lett.90, 251909 (2007).
[CrossRef]

Simovski, C.

A. Chebykin, A. Orlov, C. Simovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B86, 115420 (2012).
[CrossRef]

Simpson, R. E.

N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013).
[CrossRef] [PubMed]

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
[CrossRef] [PubMed]

Smolyaninov, I.

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

Smolyaninov, I. I.

I. I. Smolyaninov, “Vacuum in a Strong Magnetic Field as a Hyperbolic Metamaterial,” Phys. Rev. Lett.107, 253903 (2011).
[CrossRef]

Stella, L.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013).
[CrossRef]

Stenger, N.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

Teperik, T.

T. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlocal effects in coupled nanowire dimer,” arXiv:1302.3339 (2013).

Thygesen, K. S.

K. Andersen, K. L. Jensen, and K. S. Thygesen, “Hybridization of quantum plasmon modes in coupled nanowires: From the classical to the tunneling regime,” arXiv:1304.4754 (2013).

Toscano, G.

G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett.37, 2538–2540 (2012).
[CrossRef] [PubMed]

G. Toscano, S. Raza, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express13, 4176–4188 (2012).
[CrossRef]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011).
[CrossRef]

Tsai, D.

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

Tumkur, T.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009).
[CrossRef]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

Vozianova, A.

A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

Wiener, A.

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012).
[CrossRef] [PubMed]

Wood, B.

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

Wubs, M.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B86, 205429 (2012).
[CrossRef]

G. Toscano, S. Raza, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express13, 4176–4188 (2012).
[CrossRef]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett.37, 2538–2540 (2012).
[CrossRef] [PubMed]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011).
[CrossRef]

Xiao, S.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

Yan, M.

Yan, W.

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B86, 205429 (2012).
[CrossRef]

Yang, T.

L. Shen, T. Yang, and Y. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B77, 205124 (2008).
[CrossRef]

L. Shen, T. Yang, and Y. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabo-lalike dispersion,” Appl. Phys. Lett.90, 251909 (2007).
[CrossRef]

Zhang, P.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013).
[CrossRef]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

Zhu, G.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009).
[CrossRef]

ACS Appl. Mater. Interfaces

N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009).
[CrossRef]

J. Elser, V. Podolksiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).

L. Shen, T. Yang, and Y. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabo-lalike dispersion,” Appl. Phys. Lett.90, 251909 (2007).
[CrossRef]

J. Opt.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).
[CrossRef]

J. Phys. Chem. C

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C115, 19470–19475 (2011).
[CrossRef]

F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112, 17983–17987 (2008).
[CrossRef]

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013).
[CrossRef]

J. Phys. F: Met. Phys.

P. Jewsbury, “Electrodynamic boundary conditions at metal interfaces,” J. Phys. F: Met. Phys.11, 195–206 (1981).
[CrossRef]

Nanophotonics

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013).
[CrossRef]

Nature

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Opt. Express

G. Toscano, S. Raza, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express13, 4176–4188 (2012).
[CrossRef]

M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express17, 14851–14864 (2009).
[CrossRef] [PubMed]

Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8427–8256 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. A

A. N. Poddubny, P. A. Belov, G. V. Naik, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84, 023807 (2011).
[CrossRef]

Phys. Rev. B

P. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B75, 045103 (2007).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
[CrossRef]

A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

A. Chebykin, A. Orlov, C. Simovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B86, 115420 (2012).
[CrossRef]

L. Shen, T. Yang, and Y. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B77, 205124 (2008).
[CrossRef]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011).
[CrossRef]

W. L. Mochán, M. Castillo-Mussot, and R. G. Barrera, “Effect of plasma waves on the optical properties of metal-insulator superlattices,” Phys. Rev. B15, 1088–1098 (1987).
[CrossRef]

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B86, 205429 (2012).
[CrossRef]

Phys. Rev. Lett.

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012).
[CrossRef] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
[CrossRef] [PubMed]

I. I. Smolyaninov, “Vacuum in a Strong Magnetic Field as a Hyperbolic Metamaterial,” Phys. Rev. Lett.107, 253903 (2011).
[CrossRef]

Science

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef] [PubMed]

Z. Phys. A

F. Bloch, “Bremsvermögen von Atomen mit mehreren Elektronen,” Z. Phys. A81, 363–376 (1933).

Other

A. D. Boardman, Electromagnetic Surface Modes (John Wiley and Sons, Chichester, 1982).

R. C. Monreal, T. J. Antosiewicz, and S. P. Apell, “Plasmons do not go that quantum,” arXiv:1304.3023 (2013).

T. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlocal effects in coupled nanowire dimer,” arXiv:1302.3339 (2013).

K. Andersen, K. L. Jensen, and K. S. Thygesen, “Hybridization of quantum plasmon modes in coupled nanowires: From the classical to the tunneling regime,” arXiv:1304.4754 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) k0d and 1 / | k m L b |, (b) real part of ε | | loc, and (c) real parts of ε loc and ε nloc, of the HMM. The unit cell of the HMM shown in the inset of (a) has a = 6nm, b = 3nm, εd = 10, and the yellow metal layer is Au.

Fig. 2
Fig. 2

Dispersion curves of the HMM at (a) ω = 0.1ωp and (b) ω = 0.6ωp. The HMM is as that in Fig. 1 except that the loss is neglected. Red solid curves for the exact local dispersion, blue solid curves for the exact nonlocal dispersion, red dashed curves for the approximated local dispersion of Eq. (6), and blue dashed curves for the approximated nonlocal dispersion of Eq. (9).

Fig. 3
Fig. 3

Dispersion curves of the HMM at (a) ω = ω res loc = 0.41 ω p and (b) ω = ω res nloc = 0.465 ω p. The HMM is as that in Fig. 1 except that the loss is neglected. Red solid curves denote the exact local dispersion, blue solid curves the exact nonlocal dispersion; red dashed curves for the approximated local dispersion curves of Eq. (6), and blue dashed curves for the approximated dispersion curves of Eq. (9).

Fig. 4
Fig. 4

Transmitted electric-field intensity distribution for a line dipole source J = δ(x + l + xs)δ(y)ŷ positioned to the left of a HMM slab that has its left interface at x = −l and right interface at x = 0. For ω = 0.41 ω p ω res loc, panel (a1) shows the intensity for local response, (b1) for nonlocal response, and (c1) the intensity along y with x = 0. Panels (a2), (b2), and (c2) are the analogous graphs for ω = 0.465 ω p ω res nloc. In panels (c1) and (c2), the green dashed curves are for the case without the HMM slab, the red solid curves for the HMM with local response, and the blue solid curves for the HMM with nonlocal response. The HMM unit cell is as that in Fig. 1, xs = 10nm and l = 36d. The spatial coordinates in all figures are normalized by the free space wavelength at plasma frequency denoted as λp.

Fig. 5
Fig. 5

Calculated detector-area-averaged near-field intensity Iav of the light emitted by the same source as in Fig. 4 and transmitted through the same HMM slab. The detector is square-shaped with size 40nm×40nm, touching the HMM right interface at x = 0. It scans along the y-direction, and the y-coordinate on the horizontal axes in panels (a) for the LRA and (b) for the HDM corresponds to that of the center of the detector.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ε m T ( ω ) = 1 ω p 2 ω 2 + i ω γ , ε m L ( k , ω ) = 1 ω p 2 ω 2 + i ω γ β 2 k 2 ,
cos θ b = { cos θ d [ k m L cos θ m sin θ l k | | ( w d w m ) z m sin θ m cos θ l ] + k | | ( w d w m ) z d sin θ d ( 1 cos θ m cos θ l ) 1 2 [ k | | 2 k m L ( w d w m ) 2 z d z m + k m L ( z d z m + z m z d ) ] sin θ m sin θ l } [ k m L sin θ l k | | ( w d w m ) z m sin θ m ] 1 ,
θ b = k d , θ d = k d a , θ m = k m T b , θ l = k m L b ,
z d = k d k 0 ε d , w d = k | | k 0 , z m = k m T k 0 ε m T , w d = k | | k 0 ε m T ,
k 0 d 1 , 1 | k m L b | 1 ,
k 2 = k 0 2 ε | | loc k | | 2 ε | | loc ε loc { k | | 2 ε | | loc ε hdm + Δ la } .
k 2 = k 0 2 ε | | loc k | | 2 ε | | loc ε loc ,
ε | | loc = f d ε d + f m ε m , ε loc = 1 f d ε d 1 + f m ε m 1 ,
ε hdm = k m L d 2 i ε m T ε m T 1 and
Δ la = 1 12 ε d ε m T f d f m d 2 ( k 0 2 k | | 2 ε loc ) 2 + 1 12 ε | | loc d 2 [ 2 k d 2 ( k m T ) 2 f m f d ε | | loc ε d ε m T + ( k d ) 4 f d 3 ε d + ( k m T ) 4 f m 3 ε m T ] .
k 2 = k 0 2 ε | | loc k | | 2 ε | | loc ε nloc ,
1 ε nloc = 1 ε loc + 1 ε hdm .
ω res loc = ω p f d f d + f m ε d .
ω res nloc ω res loc ( 1 + ε d k m L a ) .
I av 1 D D d 2 r | E ( r ) | 2 ,

Metrics