Abstract

We explore the near-field radiative thermal energy transfer properties of hyperbolic metamaterials. The presence of unique electromagnetic states in a broad bandwidth leads to super-planckian thermal energy transfer between metamaterials separated by a nano-gap. We consider practical phonon-polaritonic metamaterials for thermal engineering in the mid-infrared range and show that the effect exists in spite of the losses, absorption and finite unit cell size. For thermophotovoltaic energy conversion applications requiring energy transfer in the near-infrared range we introduce high temperature hyperbolic metamaterials based on plasmonic materials with a high melting point. Our work paves the way for practical high temperature radiative thermal energy transfer applications of hyperbolic metamaterials.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Verlag, 2009).
  2. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
    [CrossRef]
  3. Z. M. Zhang and I. Ebrary, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  4. J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter11(35), 6621–6633 (1999).
    [CrossRef]
  5. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment Of Electrons, Molecules, Phonons, and Photons (Oxford University, 2005).
  6. S. Silverman, “The emissivity of globar,” J. Opt. Soc. Am.38(11), 989 (1948).
    [PubMed]
  7. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express14(19), 8785–8796 (2006).
    [CrossRef] [PubMed]
  8. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
    [CrossRef]
  9. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
    [CrossRef] [PubMed]
  10. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express21(S1Suppl 1), A96–A110 (2013).
    [CrossRef] [PubMed]
  11. A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
    [CrossRef] [PubMed]
  12. K. G. Balmain, A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” Antennas Wirel. Propag. Lett. IEEE1(1), 146–149 (2002).
    [CrossRef]
  13. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
    [CrossRef]
  14. D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B21(5), 1032–1043 (2004).
    [CrossRef]
  15. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
    [CrossRef]
  16. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron.2012, 1–9 (2012).
    [CrossRef]
  17. E. E. Narimanov and I. I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” Arxiv Prepr. Arxiv11095444 (2011).
  18. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012).
    [CrossRef]
  19. S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
    [CrossRef] [PubMed]
  20. I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B84(19), 195459 (2011).
    [CrossRef]
  21. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
    [CrossRef]
  22. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4(10), 3303–3314 (1971).
    [CrossRef]
  23. S.-A. Biehs, E. Rousseau, and J.-J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett.105(23), 234301 (2010).
    [CrossRef] [PubMed]
  24. G. Bimonte and E. Santamato, “General theory of electromagnetic fluctuations near a homogeneous surface in terms of its reflection amplitudes,” Phys. Rev. A76(1), 013810 (2007).
    [CrossRef]
  25. Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
    [CrossRef]
  26. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012).
    [CrossRef]
  27. D. Korobkin, B. Neuner, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, “Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium,” Opt. Express18(22), 22734–22746 (2010).
    [CrossRef] [PubMed]
  28. M. Albooyeh, D. Morits, and C. R. Simovski, “Electromagnetic characterization of substrated metasurfaces,” Metamaterials (Amst.)5(4), 178–205 (2011).
    [CrossRef]
  29. M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012).
    [CrossRef] [PubMed]
  30. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012).
    [CrossRef]
  31. A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett.94(7), 071102 (2009).
    [CrossRef]
  32. A. C. Jones and M. B. Raschke, “Thermal infrared near-field spectroscopy,” Nano Lett.12(3), 1475–1481 (2012).
    [CrossRef] [PubMed]
  33. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
    [CrossRef]

2013

2012

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron.2012, 1–9 (2012).
[CrossRef]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012).
[CrossRef]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012).
[CrossRef]

M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012).
[CrossRef] [PubMed]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012).
[CrossRef]

A. C. Jones and M. B. Raschke, “Thermal infrared near-field spectroscopy,” Nano Lett.12(3), 1475–1481 (2012).
[CrossRef] [PubMed]

2011

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

M. Albooyeh, D. Morits, and C. R. Simovski, “Electromagnetic characterization of substrated metasurfaces,” Metamaterials (Amst.)5(4), 178–205 (2011).
[CrossRef]

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B84(19), 195459 (2011).
[CrossRef]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

2010

S.-A. Biehs, E. Rousseau, and J.-J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett.105(23), 234301 (2010).
[CrossRef] [PubMed]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

D. Korobkin, B. Neuner, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, “Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium,” Opt. Express18(22), 22734–22746 (2010).
[CrossRef] [PubMed]

2009

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett.94(7), 071102 (2009).
[CrossRef]

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

2007

G. Bimonte and E. Santamato, “General theory of electromagnetic fluctuations near a homogeneous surface in terms of its reflection amplitudes,” Phys. Rev. A76(1), 013810 (2007).
[CrossRef]

2006

2005

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
[CrossRef]

2004

2003

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
[CrossRef]

2002

K. G. Balmain, A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” Antennas Wirel. Propag. Lett. IEEE1(1), 146–149 (2002).
[CrossRef]

2000

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

1999

J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter11(35), 6621–6633 (1999).
[CrossRef]

1971

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4(10), 3303–3314 (1971).
[CrossRef]

1948

Albooyeh, M.

M. Albooyeh, D. Morits, and C. R. Simovski, “Electromagnetic characterization of substrated metasurfaces,” Metamaterials (Amst.)5(4), 178–205 (2011).
[CrossRef]

Balmain, K. G.

K. G. Balmain, A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” Antennas Wirel. Propag. Lett. IEEE1(1), 146–149 (2002).
[CrossRef]

Baxter, J.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Ben-Abdallah, P.

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

Bian, Z.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Biehs, S.-A.

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

S.-A. Biehs, E. Rousseau, and J.-J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett.105(23), 234301 (2010).
[CrossRef] [PubMed]

Bimonte, G.

G. Bimonte and E. Santamato, “General theory of electromagnetic fluctuations near a homogeneous surface in terms of its reflection amplitudes,” Phys. Rev. A76(1), 013810 (2007).
[CrossRef]

Boltasseva, A.

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Carminati, R.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Chan, D. L. C.

Chen, G.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
[CrossRef]

Chettiar, U. K.

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett.94(7), 071102 (2009).
[CrossRef]

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron.2012, 1–9 (2012).
[CrossRef]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012).
[CrossRef]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Danielson, D.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Dewalt, C. J.

Dresselhaus, M. S.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Fedorov, A. G.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Ferro, G.

Fietz, C.

Fisher, T. S.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Greffet, J. J.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Greffet, J.-J.

S.-A. Biehs, E. Rousseau, and J.-J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett.105(23), 234301 (2010).
[CrossRef] [PubMed]

Guo, Y.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012).
[CrossRef]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron.2012, 1–9 (2012).
[CrossRef]

Jacob, Z.

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express21(S1Suppl 1), A96–A110 (2013).
[CrossRef] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron.2012, 1–9 (2012).
[CrossRef]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012).
[CrossRef]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012).
[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett.94(7), 071102 (2009).
[CrossRef]

Jegenyes, N.

Jelinek, L.

Joannopoulos, J. D.

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Jones, A. C.

A. C. Jones and M. B. Raschke, “Thermal infrared near-field spectroscopy,” Nano Lett.12(3), 1475–1481 (2012).
[CrossRef] [PubMed]

Jones, C. W.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Joulain, K.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Kidwai, O.

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012).
[CrossRef]

Kildishev, A. V.

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett.94(7), 071102 (2009).
[CrossRef]

Kim, J.

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Kolinko, P.

Korobkin, D.

Kortshagen, U.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Kremer, P. C.

K. G. Balmain, A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” Antennas Wirel. Propag. Lett. IEEE1(1), 146–149 (2002).
[CrossRef]

Lapine, M.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Luttgen, A.

K. G. Balmain, A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” Antennas Wirel. Propag. Lett. IEEE1(1), 146–149 (2002).
[CrossRef]

Maginn, E.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Manthiram, A.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Marqués, R.

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Molesky, S.

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express21(S1Suppl 1), A96–A110 (2013).
[CrossRef] [PubMed]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012).
[CrossRef]

Morits, D.

M. Albooyeh, D. Morits, and C. R. Simovski, “Electromagnetic characterization of substrated metasurfaces,” Metamaterials (Amst.)5(4), 178–205 (2011).
[CrossRef]

Naik, G.

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Naik, G. V.

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
[CrossRef]

Narimanov, E.

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Narimanov, E. E.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012).
[CrossRef]

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett.94(7), 071102 (2009).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
[CrossRef]

Nefedov, I. S.

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B84(19), 195459 (2011).
[CrossRef]

Neuner, B.

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron.2012, 1–9 (2012).
[CrossRef]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Nozik, A.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter11(35), 6621–6633 (1999).
[CrossRef]

Podolskiy, V. A.

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
[CrossRef]

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4(10), 3303–3314 (1971).
[CrossRef]

Raschke, M. B.

A. C. Jones and M. B. Raschke, “Thermal infrared near-field spectroscopy,” Nano Lett.12(3), 1475–1481 (2012).
[CrossRef] [PubMed]

Rolison, D. R.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Rousseau, E.

S.-A. Biehs, E. Rousseau, and J.-J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett.105(23), 234301 (2010).
[CrossRef] [PubMed]

Sands, T.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Santamato, E.

G. Bimonte and E. Santamato, “General theory of electromagnetic fluctuations near a homogeneous surface in terms of its reflection amplitudes,” Phys. Rev. A76(1), 013810 (2007).
[CrossRef]

Schurig, D.

Shalaev, V.

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Shalaev, V. M.

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett.94(7), 071102 (2009).
[CrossRef]

Shchegrov, A. V.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Shi, L.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Sholl, D.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Shvets, G.

Silverman, S.

Simovski, C. R.

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B84(19), 195459 (2011).
[CrossRef]

M. Albooyeh, D. Morits, and C. R. Simovski, “Electromagnetic characterization of substrated metasurfaces,” Metamaterials (Amst.)5(4), 178–205 (2011).
[CrossRef]

Sipe, J. E.

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012).
[CrossRef]

Smith, D. R.

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Smolyaninov, I. I.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012).
[CrossRef]

Soljacic, M.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Tschikin, M.

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4(10), 3303–3314 (1971).
[CrossRef]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Wu, Y.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

Zhukovsky, S. V.

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012).
[CrossRef]

Adv. Optoelectron.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron.2012, 1–9 (2012).
[CrossRef]

Antennas Wirel. Propag. Lett. IEEE

K. G. Balmain, A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” Antennas Wirel. Propag. Lett. IEEE1(1), 146–149 (2002).
[CrossRef]

Appl. Phys. B

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Appl. Phys. Lett.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012).
[CrossRef]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
[CrossRef]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012).
[CrossRef]

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett.94(7), 071102 (2009).
[CrossRef]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Energy Env. Sci

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009).
[CrossRef]

J. Opt.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter11(35), 6621–6633 (1999).
[CrossRef]

Metamaterials (Amst.)

M. Albooyeh, D. Morits, and C. R. Simovski, “Electromagnetic characterization of substrated metasurfaces,” Metamaterials (Amst.)5(4), 178–205 (2011).
[CrossRef]

Nano Lett.

A. C. Jones and M. B. Raschke, “Thermal infrared near-field spectroscopy,” Nano Lett.12(3), 1475–1481 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater. Express

Phys. Rev. A

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012).
[CrossRef]

G. Bimonte and E. Santamato, “General theory of electromagnetic fluctuations near a homogeneous surface in terms of its reflection amplitudes,” Phys. Rev. A76(1), 013810 (2007).
[CrossRef]

Phys. Rev. B

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4(10), 3303–3314 (1971).
[CrossRef]

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B84(19), 195459 (2011).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
[CrossRef]

Phys. Rev. Lett.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

S.-A. Biehs, E. Rousseau, and J.-J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett.105(23), 234301 (2010).
[CrossRef] [PubMed]

Other

G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment Of Electrons, Molecules, Phonons, and Photons (Oxford University, 2005).

Z. M. Zhang and I. Ebrary, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Verlag, 2009).

E. E. Narimanov and I. I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” Arxiv Prepr. Arxiv11095444 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) (i) Ellipsoidal isofrequency surface for effective anisotropic dielectric. (ii) type I h-MMs with only one negative component in the dielectric tensor. (iii) type II h-MMs with two negative components. (b) EMT parameters of SiC-SiO2 multilayers with fill fraction = 0.3. (c) EMT parameters of AZO-TiO2 multilayers with fill fraction = 0.3. We indicate the hyperbolic regions with arrows in (b) and (c). Note this latter system can be used for high temperature applications.

Fig. 2
Fig. 2

(a) Heat transfer spectrum calculated with EMT, SiC-SiO2 (MD) multilayer, SiO2-SiC (DM) multilayer. The fill fraction of SiC layer is 0.3 and the unit cell size is 20nm. The gap is 100nm. Here we consider two semi-infinite slabs. One slab is at 500K and the other at 0K. There are three distinct peaks. The right peak is due to the pole in the dielectric constant of silicon carbide at the transverse optical phonon frequency. The left and middle one correspond to type I and type II h-MMs, respectively. The higher peaks in the MD curve are due to the surface phonon polaritons of the topmost metallic layers. (b) Wavevector resolved heat transfer of SiC-SiO2 (MD) multilayer normalized to blackbody limit, the three red bright regions clearly show the origin of the three peaks in (a) and the high-k states in hyperbolic regions.

Fig. 3
Fig. 3

(a) Heat transfer spectrum calculated with EMT, AZO-TiO2 (MD) multilayer, TiO2-AZO (DM) multilayer. The fill fraction of AZO layer is 0.3 and the unit cell size is 20nm. The gap is 100nm. Here we consider two semi-infinite slabs. One slab is at 1500K and the other at 0K. The left peak is near the epsilon-near-zero transition from elliptical medium to type I hyperbolic region. The right one corresponds to the epsilon-near-zero effect in the type II region at wavelength larger than 3um. The flat region between the two peaks is due to a large effective index in the same wavelength region. The MD curve has higher peaks due to the SPP states of the topmost metallic layers. (b) Net heat transfer as a function of the gap size. At gap sizes much smaller than the operating wavelength (1um), the net heat transfer can be significantly higher than the blackbody limit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S(ω,d)= j=s,p { 0 k 0 d 2 k 4 π 2 (1 | r j 01 | 2 )(1 | r j 02 | 2 ) | 1 r j 01 r j 02 e 2i k z d | 2 + k 0 d 2 k 4 π 2 e 2Im( k z )z 4Im( r j 01 )Im( r j 02 ) | 1 r j 01 r j 02 e 2i k z d | 2 }

Metrics