Abstract

We study the Casimir torque arising from the quantum electromagnetic fluctuations due to the interaction of two interfaces in a system formed by a dense array of metallic nanorods embedded in dielectric fluids. It is demonstrated that as a consequence of the ultrahigh density of photonic states in the nanowire array it is possible to channel the quantum fluctuations, and thereby boost the Casimir torque by several orders of magnitude as compared to other known systems (e.g., birefringent parallel plates).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).
  2. E. M. Lifshitz, “The theory of molecular attractive force between solids,” Sov. Phys. JETP2, 73–83 (1956).
  3. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “The general theory of van der Waals forces,” Adv. Phys.10(38), 165–209 (1965).
    [CrossRef]
  4. F. M. Serry, D. Walliser, and G. J. Maclay, “The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems MEMS,” J. Appl. Phys.84(5), 2501–2506 (1998).
    [CrossRef]
  5. E. Buks and M. L. Roukes, “Stiction, adhesion energy, and the Casimir effect in micromechanical systems,” Phys. Rev. B63(3), 033402 (2001).
    [CrossRef]
  6. R. Esquivel-Sirvent, L. Reyes, and J. Bárcenas, “Stability and the proximity theorem in Casimir actuated nano devices,” New J. Phys.8(10), 241 (2006).
    [CrossRef]
  7. F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and quantum electrodynamical torques: physics and nanomechanics,” IEEE J. Sel. Top. Quantum Electron.13(2), 400–414 (2007).
    [CrossRef]
  8. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science291(5510), 1941–1944 (2001).
    [CrossRef] [PubMed]
  9. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett.87(21), 211801 (2001).
    [CrossRef] [PubMed]
  10. A. Ashourvan, M. Miri, and R. Golestanian, “Noncontact Rack and Pinion Powered by the Lateral Casimir Force,” Phys. Rev. Lett.98(14), 140801 (2007).
    [CrossRef] [PubMed]
  11. T. Emig, “Casimir-Force-Driven Ratchets,” Phys. Rev. Lett.98(16), 160801 (2007).
    [CrossRef] [PubMed]
  12. V. A. Parsegian and G. H. Weiss, “Dielectric anisotropy and the van der Waals interaction between bulk media,” J. Adhes.3(4), 259–267 (1972).
    [CrossRef]
  13. Y. S. Barash, “Moment of van der Waals forces between anisotropic bodies,” Izv. Vyss. Ucebn. Zaved. Radiofiz.12, 1637–1643 (1978) (Radiophys. Quantum Electron. 21, 1138–1143 (1978)).
  14. J. N. Munday, D. Iannuzzi, Y. Barash, and F. Capasso, “Torque on birefringent plates induced by quantum fluctuations,” Phys. Rev. A71(4), 042102 (2005).
    [CrossRef]
  15. T. G. Philbin and U. Leonhardt, “Alternative calculation of the Casimir forces between birefringent plates,” Phys. Rev. A78(4), 042107 (2008).
    [CrossRef]
  16. J. N. Munday, D. Iannuzzi, and F. Capasso, “Quantum electrodynamical torques in the presence of Brownian motion,” New J. Phys.8(10), 244 (2006).
    [CrossRef]
  17. R. B. Rodrigues, P. A. M. Neto, A. Lambrecht, and S. Reynaud, “Casimir torque between corrugated metallic plates,” J. Phys. A.41(16), 164019 (2008).
    [CrossRef]
  18. U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys.9(8), 254 (2007).
    [CrossRef]
  19. F. S. Rosa, D. A. Dalvit, and P. W. Milonni, “Casimir-Lifshitz Theory and Metamaterials,” Phys. Rev. Lett.100(18), 183602 (2008).
    [CrossRef] [PubMed]
  20. R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir Force in Chiral Metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
    [CrossRef] [PubMed]
  21. V. Yannopapas and N. V. Vitanov, “First-Principles Study of Casimir Repulsion in Metamaterials,” Phys. Rev. Lett.103(12), 120401 (2009).
    [CrossRef] [PubMed]
  22. M. G. Silveirinha, “Casimir interaction between metal-dielectric metamaterial slabs: Attraction at all macroscopic distances,” Phys. Rev. B82(8), 085101 (2010).
    [CrossRef]
  23. M. G. Silveirinha and S. I. Maslovski, “Physical restrictions on the Casimir interaction of metal-dielectric metamaterials: An effective-medium approach,” Phys. Rev. A82(5), 052508 (2010).
    [CrossRef]
  24. S. I. Maslovski and M. G. Silveirinha, “Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials,” Phys. Rev. A82(2), 022511 (2010).
    [CrossRef]
  25. S. I. Maslovski and M. G. Silveirinha, “Mimicking Boyer’s Casimir repulsion with a nanowire material,” Phys. Rev. A83(2), 022508 (2011).
    [CrossRef]
  26. M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(4), 046612 (2006).
    [CrossRef] [PubMed]
  27. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
    [CrossRef]
  28. M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Additional boundary condition for a wire medium connected to a metallic surface,” New J. Phys.10(5), 053011 (2008).
    [CrossRef]
  29. T. A. Morgado and M. G. Silveirinha, “Transport of an arbitrary near-field component with an array of tilted wires,” New J. Phys.11(8), 083023 (2009).
    [CrossRef]
  30. N. G. Van Kampen, B. Nijboer, and K. Schram, “On the macroscopic theory of Van der Waals forces,” Phys. Lett. A26(7), 307–308 (1968).
    [CrossRef]
  31. A. Lambrecht and V. N. Marachevsky, “New geometries in the Casimir effect: Dielectric gratings,” J. Phys. Conf. Ser.161(1), 012014 (2009).
    [CrossRef]
  32. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]

2011 (1)

S. I. Maslovski and M. G. Silveirinha, “Mimicking Boyer’s Casimir repulsion with a nanowire material,” Phys. Rev. A83(2), 022508 (2011).
[CrossRef]

2010 (3)

M. G. Silveirinha, “Casimir interaction between metal-dielectric metamaterial slabs: Attraction at all macroscopic distances,” Phys. Rev. B82(8), 085101 (2010).
[CrossRef]

M. G. Silveirinha and S. I. Maslovski, “Physical restrictions on the Casimir interaction of metal-dielectric metamaterials: An effective-medium approach,” Phys. Rev. A82(5), 052508 (2010).
[CrossRef]

S. I. Maslovski and M. G. Silveirinha, “Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials,” Phys. Rev. A82(2), 022511 (2010).
[CrossRef]

2009 (4)

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir Force in Chiral Metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

V. Yannopapas and N. V. Vitanov, “First-Principles Study of Casimir Repulsion in Metamaterials,” Phys. Rev. Lett.103(12), 120401 (2009).
[CrossRef] [PubMed]

T. A. Morgado and M. G. Silveirinha, “Transport of an arbitrary near-field component with an array of tilted wires,” New J. Phys.11(8), 083023 (2009).
[CrossRef]

A. Lambrecht and V. N. Marachevsky, “New geometries in the Casimir effect: Dielectric gratings,” J. Phys. Conf. Ser.161(1), 012014 (2009).
[CrossRef]

2008 (4)

M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Additional boundary condition for a wire medium connected to a metallic surface,” New J. Phys.10(5), 053011 (2008).
[CrossRef]

T. G. Philbin and U. Leonhardt, “Alternative calculation of the Casimir forces between birefringent plates,” Phys. Rev. A78(4), 042107 (2008).
[CrossRef]

R. B. Rodrigues, P. A. M. Neto, A. Lambrecht, and S. Reynaud, “Casimir torque between corrugated metallic plates,” J. Phys. A.41(16), 164019 (2008).
[CrossRef]

F. S. Rosa, D. A. Dalvit, and P. W. Milonni, “Casimir-Lifshitz Theory and Metamaterials,” Phys. Rev. Lett.100(18), 183602 (2008).
[CrossRef] [PubMed]

2007 (4)

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys.9(8), 254 (2007).
[CrossRef]

F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and quantum electrodynamical torques: physics and nanomechanics,” IEEE J. Sel. Top. Quantum Electron.13(2), 400–414 (2007).
[CrossRef]

A. Ashourvan, M. Miri, and R. Golestanian, “Noncontact Rack and Pinion Powered by the Lateral Casimir Force,” Phys. Rev. Lett.98(14), 140801 (2007).
[CrossRef] [PubMed]

T. Emig, “Casimir-Force-Driven Ratchets,” Phys. Rev. Lett.98(16), 160801 (2007).
[CrossRef] [PubMed]

2006 (3)

J. N. Munday, D. Iannuzzi, and F. Capasso, “Quantum electrodynamical torques in the presence of Brownian motion,” New J. Phys.8(10), 244 (2006).
[CrossRef]

R. Esquivel-Sirvent, L. Reyes, and J. Bárcenas, “Stability and the proximity theorem in Casimir actuated nano devices,” New J. Phys.8(10), 241 (2006).
[CrossRef]

M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(4), 046612 (2006).
[CrossRef] [PubMed]

2005 (1)

J. N. Munday, D. Iannuzzi, Y. Barash, and F. Capasso, “Torque on birefringent plates induced by quantum fluctuations,” Phys. Rev. A71(4), 042102 (2005).
[CrossRef]

2003 (1)

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
[CrossRef]

2001 (3)

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett.87(21), 211801 (2001).
[CrossRef] [PubMed]

E. Buks and M. L. Roukes, “Stiction, adhesion energy, and the Casimir effect in micromechanical systems,” Phys. Rev. B63(3), 033402 (2001).
[CrossRef]

1998 (1)

F. M. Serry, D. Walliser, and G. J. Maclay, “The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems MEMS,” J. Appl. Phys.84(5), 2501–2506 (1998).
[CrossRef]

1985 (1)

1978 (1)

Y. S. Barash, “Moment of van der Waals forces between anisotropic bodies,” Izv. Vyss. Ucebn. Zaved. Radiofiz.12, 1637–1643 (1978) (Radiophys. Quantum Electron. 21, 1138–1143 (1978)).

1972 (1)

V. A. Parsegian and G. H. Weiss, “Dielectric anisotropy and the van der Waals interaction between bulk media,” J. Adhes.3(4), 259–267 (1972).
[CrossRef]

1968 (1)

N. G. Van Kampen, B. Nijboer, and K. Schram, “On the macroscopic theory of Van der Waals forces,” Phys. Lett. A26(7), 307–308 (1968).
[CrossRef]

1965 (1)

I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “The general theory of van der Waals forces,” Adv. Phys.10(38), 165–209 (1965).
[CrossRef]

1956 (1)

E. M. Lifshitz, “The theory of molecular attractive force between solids,” Sov. Phys. JETP2, 73–83 (1956).

Aksyuk, V. A.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett.87(21), 211801 (2001).
[CrossRef] [PubMed]

Alexander, R. W.

Ashourvan, A.

A. Ashourvan, M. Miri, and R. Golestanian, “Noncontact Rack and Pinion Powered by the Lateral Casimir Force,” Phys. Rev. Lett.98(14), 140801 (2007).
[CrossRef] [PubMed]

Barash, Y.

J. N. Munday, D. Iannuzzi, Y. Barash, and F. Capasso, “Torque on birefringent plates induced by quantum fluctuations,” Phys. Rev. A71(4), 042102 (2005).
[CrossRef]

Barash, Y. S.

Y. S. Barash, “Moment of van der Waals forces between anisotropic bodies,” Izv. Vyss. Ucebn. Zaved. Radiofiz.12, 1637–1643 (1978) (Radiophys. Quantum Electron. 21, 1138–1143 (1978)).

Bárcenas, J.

R. Esquivel-Sirvent, L. Reyes, and J. Bárcenas, “Stability and the proximity theorem in Casimir actuated nano devices,” New J. Phys.8(10), 241 (2006).
[CrossRef]

Bell, R. J.

Belov, P. A.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
[CrossRef]

Bishop, D. J.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett.87(21), 211801 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

Buks, E.

E. Buks and M. L. Roukes, “Stiction, adhesion energy, and the Casimir effect in micromechanical systems,” Phys. Rev. B63(3), 033402 (2001).
[CrossRef]

Capasso, F.

F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and quantum electrodynamical torques: physics and nanomechanics,” IEEE J. Sel. Top. Quantum Electron.13(2), 400–414 (2007).
[CrossRef]

J. N. Munday, D. Iannuzzi, and F. Capasso, “Quantum electrodynamical torques in the presence of Brownian motion,” New J. Phys.8(10), 244 (2006).
[CrossRef]

J. N. Munday, D. Iannuzzi, Y. Barash, and F. Capasso, “Torque on birefringent plates induced by quantum fluctuations,” Phys. Rev. A71(4), 042102 (2005).
[CrossRef]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett.87(21), 211801 (2001).
[CrossRef] [PubMed]

Chan, H. B.

F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and quantum electrodynamical torques: physics and nanomechanics,” IEEE J. Sel. Top. Quantum Electron.13(2), 400–414 (2007).
[CrossRef]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett.87(21), 211801 (2001).
[CrossRef] [PubMed]

Costa, J. R.

M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Additional boundary condition for a wire medium connected to a metallic surface,” New J. Phys.10(5), 053011 (2008).
[CrossRef]

Dalvit, D. A.

F. S. Rosa, D. A. Dalvit, and P. W. Milonni, “Casimir-Lifshitz Theory and Metamaterials,” Phys. Rev. Lett.100(18), 183602 (2008).
[CrossRef] [PubMed]

Dzyaloshinskii, I. E.

I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “The general theory of van der Waals forces,” Adv. Phys.10(38), 165–209 (1965).
[CrossRef]

Economou, E. N.

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir Force in Chiral Metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

Emig, T.

T. Emig, “Casimir-Force-Driven Ratchets,” Phys. Rev. Lett.98(16), 160801 (2007).
[CrossRef] [PubMed]

Esquivel-Sirvent, R.

R. Esquivel-Sirvent, L. Reyes, and J. Bárcenas, “Stability and the proximity theorem in Casimir actuated nano devices,” New J. Phys.8(10), 241 (2006).
[CrossRef]

Fernandes, C. A.

M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Additional boundary condition for a wire medium connected to a metallic surface,” New J. Phys.10(5), 053011 (2008).
[CrossRef]

Golestanian, R.

A. Ashourvan, M. Miri, and R. Golestanian, “Noncontact Rack and Pinion Powered by the Lateral Casimir Force,” Phys. Rev. Lett.98(14), 140801 (2007).
[CrossRef] [PubMed]

Iannuzzi, D.

F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and quantum electrodynamical torques: physics and nanomechanics,” IEEE J. Sel. Top. Quantum Electron.13(2), 400–414 (2007).
[CrossRef]

J. N. Munday, D. Iannuzzi, and F. Capasso, “Quantum electrodynamical torques in the presence of Brownian motion,” New J. Phys.8(10), 244 (2006).
[CrossRef]

J. N. Munday, D. Iannuzzi, Y. Barash, and F. Capasso, “Torque on birefringent plates induced by quantum fluctuations,” Phys. Rev. A71(4), 042102 (2005).
[CrossRef]

Kleiman, R. N.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett.87(21), 211801 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

Koschny, T.

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir Force in Chiral Metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

Lambrecht, A.

A. Lambrecht and V. N. Marachevsky, “New geometries in the Casimir effect: Dielectric gratings,” J. Phys. Conf. Ser.161(1), 012014 (2009).
[CrossRef]

R. B. Rodrigues, P. A. M. Neto, A. Lambrecht, and S. Reynaud, “Casimir torque between corrugated metallic plates,” J. Phys. A.41(16), 164019 (2008).
[CrossRef]

Leonhardt, U.

T. G. Philbin and U. Leonhardt, “Alternative calculation of the Casimir forces between birefringent plates,” Phys. Rev. A78(4), 042107 (2008).
[CrossRef]

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys.9(8), 254 (2007).
[CrossRef]

Lifshitz, E. M.

I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “The general theory of van der Waals forces,” Adv. Phys.10(38), 165–209 (1965).
[CrossRef]

E. M. Lifshitz, “The theory of molecular attractive force between solids,” Sov. Phys. JETP2, 73–83 (1956).

Long, L. L.

Maclay, G. J.

F. M. Serry, D. Walliser, and G. J. Maclay, “The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems MEMS,” J. Appl. Phys.84(5), 2501–2506 (1998).
[CrossRef]

Marachevsky, V. N.

A. Lambrecht and V. N. Marachevsky, “New geometries in the Casimir effect: Dielectric gratings,” J. Phys. Conf. Ser.161(1), 012014 (2009).
[CrossRef]

Marques, R.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
[CrossRef]

Maslovski, S. I.

S. I. Maslovski and M. G. Silveirinha, “Mimicking Boyer’s Casimir repulsion with a nanowire material,” Phys. Rev. A83(2), 022508 (2011).
[CrossRef]

M. G. Silveirinha and S. I. Maslovski, “Physical restrictions on the Casimir interaction of metal-dielectric metamaterials: An effective-medium approach,” Phys. Rev. A82(5), 052508 (2010).
[CrossRef]

S. I. Maslovski and M. G. Silveirinha, “Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials,” Phys. Rev. A82(2), 022511 (2010).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
[CrossRef]

Milonni, P. W.

F. S. Rosa, D. A. Dalvit, and P. W. Milonni, “Casimir-Lifshitz Theory and Metamaterials,” Phys. Rev. Lett.100(18), 183602 (2008).
[CrossRef] [PubMed]

Miri, M.

A. Ashourvan, M. Miri, and R. Golestanian, “Noncontact Rack and Pinion Powered by the Lateral Casimir Force,” Phys. Rev. Lett.98(14), 140801 (2007).
[CrossRef] [PubMed]

Morgado, T. A.

T. A. Morgado and M. G. Silveirinha, “Transport of an arbitrary near-field component with an array of tilted wires,” New J. Phys.11(8), 083023 (2009).
[CrossRef]

Munday, J. N.

F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and quantum electrodynamical torques: physics and nanomechanics,” IEEE J. Sel. Top. Quantum Electron.13(2), 400–414 (2007).
[CrossRef]

J. N. Munday, D. Iannuzzi, and F. Capasso, “Quantum electrodynamical torques in the presence of Brownian motion,” New J. Phys.8(10), 244 (2006).
[CrossRef]

J. N. Munday, D. Iannuzzi, Y. Barash, and F. Capasso, “Torque on birefringent plates induced by quantum fluctuations,” Phys. Rev. A71(4), 042102 (2005).
[CrossRef]

Nefedov, I. S.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
[CrossRef]

Neto, P. A. M.

R. B. Rodrigues, P. A. M. Neto, A. Lambrecht, and S. Reynaud, “Casimir torque between corrugated metallic plates,” J. Phys. A.41(16), 164019 (2008).
[CrossRef]

Nijboer, B.

N. G. Van Kampen, B. Nijboer, and K. Schram, “On the macroscopic theory of Van der Waals forces,” Phys. Lett. A26(7), 307–308 (1968).
[CrossRef]

Ordal, M. A.

Parsegian, V. A.

V. A. Parsegian and G. H. Weiss, “Dielectric anisotropy and the van der Waals interaction between bulk media,” J. Adhes.3(4), 259–267 (1972).
[CrossRef]

Philbin, T. G.

T. G. Philbin and U. Leonhardt, “Alternative calculation of the Casimir forces between birefringent plates,” Phys. Rev. A78(4), 042107 (2008).
[CrossRef]

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys.9(8), 254 (2007).
[CrossRef]

Pitaevskii, L. P.

I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “The general theory of van der Waals forces,” Adv. Phys.10(38), 165–209 (1965).
[CrossRef]

Querry, M. R.

Reyes, L.

R. Esquivel-Sirvent, L. Reyes, and J. Bárcenas, “Stability and the proximity theorem in Casimir actuated nano devices,” New J. Phys.8(10), 241 (2006).
[CrossRef]

Reynaud, S.

R. B. Rodrigues, P. A. M. Neto, A. Lambrecht, and S. Reynaud, “Casimir torque between corrugated metallic plates,” J. Phys. A.41(16), 164019 (2008).
[CrossRef]

Rodrigues, R. B.

R. B. Rodrigues, P. A. M. Neto, A. Lambrecht, and S. Reynaud, “Casimir torque between corrugated metallic plates,” J. Phys. A.41(16), 164019 (2008).
[CrossRef]

Rosa, F. S.

F. S. Rosa, D. A. Dalvit, and P. W. Milonni, “Casimir-Lifshitz Theory and Metamaterials,” Phys. Rev. Lett.100(18), 183602 (2008).
[CrossRef] [PubMed]

Roukes, M. L.

E. Buks and M. L. Roukes, “Stiction, adhesion energy, and the Casimir effect in micromechanical systems,” Phys. Rev. B63(3), 033402 (2001).
[CrossRef]

Schram, K.

N. G. Van Kampen, B. Nijboer, and K. Schram, “On the macroscopic theory of Van der Waals forces,” Phys. Lett. A26(7), 307–308 (1968).
[CrossRef]

Serry, F. M.

F. M. Serry, D. Walliser, and G. J. Maclay, “The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems MEMS,” J. Appl. Phys.84(5), 2501–2506 (1998).
[CrossRef]

Silveirinha, M.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
[CrossRef]

Silveirinha, M. G.

S. I. Maslovski and M. G. Silveirinha, “Mimicking Boyer’s Casimir repulsion with a nanowire material,” Phys. Rev. A83(2), 022508 (2011).
[CrossRef]

S. I. Maslovski and M. G. Silveirinha, “Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials,” Phys. Rev. A82(2), 022511 (2010).
[CrossRef]

M. G. Silveirinha, “Casimir interaction between metal-dielectric metamaterial slabs: Attraction at all macroscopic distances,” Phys. Rev. B82(8), 085101 (2010).
[CrossRef]

M. G. Silveirinha and S. I. Maslovski, “Physical restrictions on the Casimir interaction of metal-dielectric metamaterials: An effective-medium approach,” Phys. Rev. A82(5), 052508 (2010).
[CrossRef]

T. A. Morgado and M. G. Silveirinha, “Transport of an arbitrary near-field component with an array of tilted wires,” New J. Phys.11(8), 083023 (2009).
[CrossRef]

M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Additional boundary condition for a wire medium connected to a metallic surface,” New J. Phys.10(5), 053011 (2008).
[CrossRef]

M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(4), 046612 (2006).
[CrossRef] [PubMed]

Simovski, C. R.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
[CrossRef]

Soukoulis, C. M.

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir Force in Chiral Metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

Tretyakov, S. A.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
[CrossRef]

Van Kampen, N. G.

N. G. Van Kampen, B. Nijboer, and K. Schram, “On the macroscopic theory of Van der Waals forces,” Phys. Lett. A26(7), 307–308 (1968).
[CrossRef]

Vitanov, N. V.

V. Yannopapas and N. V. Vitanov, “First-Principles Study of Casimir Repulsion in Metamaterials,” Phys. Rev. Lett.103(12), 120401 (2009).
[CrossRef] [PubMed]

Walliser, D.

F. M. Serry, D. Walliser, and G. J. Maclay, “The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems MEMS,” J. Appl. Phys.84(5), 2501–2506 (1998).
[CrossRef]

Weiss, G. H.

V. A. Parsegian and G. H. Weiss, “Dielectric anisotropy and the van der Waals interaction between bulk media,” J. Adhes.3(4), 259–267 (1972).
[CrossRef]

Yannopapas, V.

V. Yannopapas and N. V. Vitanov, “First-Principles Study of Casimir Repulsion in Metamaterials,” Phys. Rev. Lett.103(12), 120401 (2009).
[CrossRef] [PubMed]

Zhao, R.

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir Force in Chiral Metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

Zhou, J.

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir Force in Chiral Metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

Adv. Phys. (1)

I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “The general theory of van der Waals forces,” Adv. Phys.10(38), 165–209 (1965).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and quantum electrodynamical torques: physics and nanomechanics,” IEEE J. Sel. Top. Quantum Electron.13(2), 400–414 (2007).
[CrossRef]

Izv. Vyss. Ucebn. Zaved. Radiofiz. (1)

Y. S. Barash, “Moment of van der Waals forces between anisotropic bodies,” Izv. Vyss. Ucebn. Zaved. Radiofiz.12, 1637–1643 (1978) (Radiophys. Quantum Electron. 21, 1138–1143 (1978)).

J. Adhes. (1)

V. A. Parsegian and G. H. Weiss, “Dielectric anisotropy and the van der Waals interaction between bulk media,” J. Adhes.3(4), 259–267 (1972).
[CrossRef]

J. Appl. Phys. (1)

F. M. Serry, D. Walliser, and G. J. Maclay, “The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems MEMS,” J. Appl. Phys.84(5), 2501–2506 (1998).
[CrossRef]

J. Phys. A. (1)

R. B. Rodrigues, P. A. M. Neto, A. Lambrecht, and S. Reynaud, “Casimir torque between corrugated metallic plates,” J. Phys. A.41(16), 164019 (2008).
[CrossRef]

J. Phys. Conf. Ser. (1)

A. Lambrecht and V. N. Marachevsky, “New geometries in the Casimir effect: Dielectric gratings,” J. Phys. Conf. Ser.161(1), 012014 (2009).
[CrossRef]

New J. Phys. (5)

J. N. Munday, D. Iannuzzi, and F. Capasso, “Quantum electrodynamical torques in the presence of Brownian motion,” New J. Phys.8(10), 244 (2006).
[CrossRef]

M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Additional boundary condition for a wire medium connected to a metallic surface,” New J. Phys.10(5), 053011 (2008).
[CrossRef]

T. A. Morgado and M. G. Silveirinha, “Transport of an arbitrary near-field component with an array of tilted wires,” New J. Phys.11(8), 083023 (2009).
[CrossRef]

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys.9(8), 254 (2007).
[CrossRef]

R. Esquivel-Sirvent, L. Reyes, and J. Bárcenas, “Stability and the proximity theorem in Casimir actuated nano devices,” New J. Phys.8(10), 241 (2006).
[CrossRef]

Phys. Lett. A (1)

N. G. Van Kampen, B. Nijboer, and K. Schram, “On the macroscopic theory of Van der Waals forces,” Phys. Lett. A26(7), 307–308 (1968).
[CrossRef]

Phys. Rev. A (5)

M. G. Silveirinha and S. I. Maslovski, “Physical restrictions on the Casimir interaction of metal-dielectric metamaterials: An effective-medium approach,” Phys. Rev. A82(5), 052508 (2010).
[CrossRef]

S. I. Maslovski and M. G. Silveirinha, “Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials,” Phys. Rev. A82(2), 022511 (2010).
[CrossRef]

S. I. Maslovski and M. G. Silveirinha, “Mimicking Boyer’s Casimir repulsion with a nanowire material,” Phys. Rev. A83(2), 022508 (2011).
[CrossRef]

J. N. Munday, D. Iannuzzi, Y. Barash, and F. Capasso, “Torque on birefringent plates induced by quantum fluctuations,” Phys. Rev. A71(4), 042102 (2005).
[CrossRef]

T. G. Philbin and U. Leonhardt, “Alternative calculation of the Casimir forces between birefringent plates,” Phys. Rev. A78(4), 042107 (2008).
[CrossRef]

Phys. Rev. B (3)

E. Buks and M. L. Roukes, “Stiction, adhesion energy, and the Casimir effect in micromechanical systems,” Phys. Rev. B63(3), 033402 (2001).
[CrossRef]

M. G. Silveirinha, “Casimir interaction between metal-dielectric metamaterial slabs: Attraction at all macroscopic distances,” Phys. Rev. B82(8), 085101 (2010).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(4), 046612 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett.87(21), 211801 (2001).
[CrossRef] [PubMed]

A. Ashourvan, M. Miri, and R. Golestanian, “Noncontact Rack and Pinion Powered by the Lateral Casimir Force,” Phys. Rev. Lett.98(14), 140801 (2007).
[CrossRef] [PubMed]

T. Emig, “Casimir-Force-Driven Ratchets,” Phys. Rev. Lett.98(16), 160801 (2007).
[CrossRef] [PubMed]

F. S. Rosa, D. A. Dalvit, and P. W. Milonni, “Casimir-Lifshitz Theory and Metamaterials,” Phys. Rev. Lett.100(18), 183602 (2008).
[CrossRef] [PubMed]

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir Force in Chiral Metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

V. Yannopapas and N. V. Vitanov, “First-Principles Study of Casimir Repulsion in Metamaterials,” Phys. Rev. Lett.103(12), 120401 (2009).
[CrossRef] [PubMed]

Science (1)

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

E. M. Lifshitz, “The theory of molecular attractive force between solids,” Sov. Phys. JETP2, 73–83 (1956).

Other (1)

H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the system under study. A square array of parallel metallic nanowires embedded in three dielectric fluids. The z-axis is chosen to be orthogonal to the three dielectric layers. α is the angle between the axial direction of the nanowires ( u ^ α ) and the z-direction.

Fig. 2
Fig. 2

A sandwich of three layers of nonmagnetic uniaxial materials with the same optical axis. The Casimir-Lifshitz energy is calculated from the reflection R ¯ ¯ A,B and transfer M ¯ ¯ AB,BA matrices.

Fig. 3
Fig. 3

Normalized Casimir forces as functions of the normalized distance for two different system configurations shown in the insets. (i) Configuration I: PEC – nanowires embedded in air – PEC; (ii) Configuration II: nanowires embedded in three nonmagnetic materials (PEC – bromobenzene – air). In both cases, a=100nm and r w =20nm . Solid lines: Contribution of the q-TEM modes to the Casimir force calculated with the nonlocal model of Ref [24]; Discrete symbols: Casimir forces calculated using the hyperbolic medium model described in Subsection 2.1. Blue lines and symbols: PEC nanowires; Green lines and symbols: lossy and dispersive Ag nanowires modeled by a Drude-type dielectric function with parameters taken from the literature [32].

Fig. 4
Fig. 4

Nanowire material system configurations. (a) Single-interface configuration; (b) Twin-interface configuration.

Fig. 5
Fig. 5

Casimir interaction torque M C,int per unity of the cross-sectional area as a function of α for a nanowire configuration as illustrated in Fig. 1 with ε h,1 = ε h,3 =80.4 (water) and ε h,2 =3.1 (olive oil). Solid lines: Casimir interaction torques calculated using the hyperbolic medium model described in Subsection 2.1. Dashed line: Casimir interaction torque calculated using the analytical formula derived in Subsection 3.2. (i) PEC nanowires; (ii) Ag nanowires. In all these plots a=100nm , r w =17.84nm , and d=4μm .

Fig. 6
Fig. 6

Casimir interaction torque M C,int per unity of the cross-sectional area as a function of the distance d for α= 45 ° . (i) Nanowire configuration illustrated in Fig. 1 with ε h,1 = ε h,3 =80.4 , ε h,2 =3.1 , a=100nm , and r w =17.84nm ; Dashed line: PEC nanowires; Solid line: Ag nanowires. (ii) Casimir torque in a system formed by two 20μm thick calcite and barium titanate (BaTiO3) plates in vacuum as considered in Ref [14].

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ε αα = ε m f V +(1 f V ) ε h ,
δ ε C L x L y = 4 π 3 0 π/a π/ a y π/ a y 0 + logD(iξ, k x , k y ,α,d)dξd k y d k x ,
D(iξ, k x , k y ,d,α)det[ I (2) ¯ ¯ R ¯ ¯ A (iξ, k x , k y ,α) M ¯ ¯ AB (iξ, k x , k y ,α,d) R ¯ ¯ B (iξ, k x , k y ,α) M ¯ ¯ BA (iξ, k x , k y ,α,d)]
R ¯ ¯ A,B =( r co ord (iξ, k || ) r cr ord (iξ, k || ) r cr ext (iξ, k || ) r co ext (iξ, k || ) )
M ¯ ¯ AB,BA =( e γ ord d 0 0 e γ ± ext d ),
γ ord = ε h,2 μ 0 ξ 2 + k x 2 + k y 2 ,
k x 2 + k p 2 ε αα + k α 2 ε h,2 = ξ 2 μ 0 ,
γ ± ext = ε h,2 μ 0 ξsecα±i k y tanα.
F TEM L x L y = c Li 2 ( r 1 r 2 ) 4π a 2 d 2 ,
F TEM L x L y = π 24 c a 2 d 2 .
M C L x L y = α ( ε C L x L y ).
ε C ( d,α )= ε C ( d,α )+δ ε C ( d,α ).
M C L x L y = M C,int L x L y + M C,12 L x L y + M C,32 L x L y = α ( δ ε C L x L y ) α ( ε C,12 L x L y ) α ( ε C,32 L x L y ).
δ ε C L x L y = 2π π/a π/a π/ a y π/ a y d k y d k x (2π) 2 0 + log(1 r 1 r 2 e γ + d e γ d ) dξ,
δ ε C L x L y = 4π cos 2 α μ 0 ε h,2 a 2 d 0 + log(1 r 1 r 2 e t ) dt= 4π cos 2 α μ 0 ε h,2 a 2 d Li 2 ( r 1 r 2 ).
M C,int L x L y = α ( δ ε C L x L y )=sin(2α) δ ε C L x L y | α=0 .
M ˜ C.12 L x L y = α ( δ ε ˜ C,12 L x L y )2 α ( ε C,12 L x L y ).
M C,12 L x L y = lim d ˜ 0 1 2 α ( δ ε ˜ C,12 L x L y ).
δ ε ˜ C,12 L x L y = 2π π/a π/a π/ a y π/ a y d k y d k x (2π) 2 0 ξ max log(1 r 1 2 e γ + d ˜ e γ d ˜ ) dξ = 2π cosα a 2 0 ξ max log(1 r 1 2 e 2 d ˜ ε h,2 μ 0 secαξ ) dξ.
M C,12 L x L y = c 4 sin2α a 3 log( 1 1 r 1 2 ).

Metrics