Abstract

One of the basic functionalities of photonic devices is the ability to manipulate the polarization state of light. Polarization components are usually implemented using the retardation effect in natural birefringent crystals and, thus, have a bulky design. Here, we have demonstrated the polarization manipulation of light by employing a thin subwavelength slab of metamaterial with an extremely anisotropic effective permittivity tensor. Polarization properties of light incident on the metamaterial in the regime of hyperbolic, epsilon-near-zero, and conventional elliptic dispersions were compared. We have shown that both reflection from and transmission through λ/20 thick slab of the metamaterial may provide nearly complete linear-to-circular polarization conversion or 90° linear polarization rotation, not achievable with natural materials. Using ellipsometric measurements, we experimentally studied the polarization conversion properties of the metamaterial slab made of the plasmonic nanorod arrays in different dispersion regimes. We have also suggested all-optical ultrafast control of reflected or transmitted light polarization by employing metal nonlinearities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2000).
  2. A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials, (World Scientific, 2007).
  3. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
    [CrossRef] [PubMed]
  4. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
    [CrossRef] [PubMed]
  5. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
    [CrossRef] [PubMed]
  6. A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008).
    [CrossRef] [PubMed]
  7. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett.12(2), 1026–1031 (2012).
    [CrossRef] [PubMed]
  8. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
    [CrossRef] [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  10. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
    [CrossRef]
  11. M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of Faraday rotation from a single confined spin,” Nat. Phys.3(2), 101–106 (2007).
    [CrossRef]
  12. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
    [CrossRef]
  13. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater.24(31), 4229–4248 (2012).
    [CrossRef] [PubMed]
  14. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
    [CrossRef] [PubMed]
  15. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  16. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
    [CrossRef]
  17. P. Ginzburg and M. Orenstein, “Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures,” J. Appl. Phys.103(8), 083105 (2008).
    [CrossRef]
  18. P. Ginzburg and M. Orenstein, “Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification,” J. Appl. Phys.104(6), 063513 (2008).
    [CrossRef]
  19. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
    [CrossRef]
  20. A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012).
    [CrossRef]
  21. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E.70(4), 046608 (2004).
    [CrossRef] [PubMed]
  22. M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006).
    [CrossRef] [PubMed]
  23. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008).
    [CrossRef] [PubMed]
  24. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
    [CrossRef] [PubMed]
  25. P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
    [CrossRef] [PubMed]
  26. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
    [CrossRef] [PubMed]
  27. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
    [CrossRef]
  28. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
    [CrossRef] [PubMed]
  29. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
    [CrossRef]
  30. P. Ginzburg, F. J. Rodríguez-Fortuño, A. Martínez, and A. V. Zayats, “Analogue of the quantum Hanle effect and polarization conversion in non-Hermitian plasmonic metamaterials,” Nano Lett.12(12), 6309–6314 (2012).
    [CrossRef] [PubMed]
  31. M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
    [CrossRef] [PubMed]
  32. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010).
    [CrossRef]
  33. R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, R. Atkinson, and L. M. Eng, “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Opt. Express16(26), 21671–21681 (2008).
    [CrossRef] [PubMed]
  34. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
    [CrossRef]
  35. T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
    [CrossRef]
  36. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
    [CrossRef] [PubMed]
  37. P. Yeh, “Optics of anisotropic layered media: a new 4x4 matrix algebra,” Surf. Sci.96(1-3), 41–53 (1980).
    [CrossRef]
  38. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
    [CrossRef] [PubMed]
  39. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
    [CrossRef]
  40. J. Elser, R. Wangberg, V. A. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89(26), 261102 (2006).
    [CrossRef]

2012

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett.12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater.24(31), 4229–4248 (2012).
[CrossRef] [PubMed]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012).
[CrossRef]

P. Ginzburg, F. J. Rodríguez-Fortuño, A. Martínez, and A. V. Zayats, “Analogue of the quantum Hanle effect and polarization conversion in non-Hermitian plasmonic metamaterials,” Nano Lett.12(12), 6309–6314 (2012).
[CrossRef] [PubMed]

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

2011

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
[CrossRef] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

2010

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010).
[CrossRef]

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

2009

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

2008

P. Ginzburg and M. Orenstein, “Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures,” J. Appl. Phys.103(8), 083105 (2008).
[CrossRef]

P. Ginzburg and M. Orenstein, “Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification,” J. Appl. Phys.104(6), 063513 (2008).
[CrossRef]

A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, R. Atkinson, and L. M. Eng, “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Opt. Express16(26), 21671–21681 (2008).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008).
[CrossRef] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
[CrossRef] [PubMed]

2007

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of Faraday rotation from a single confined spin,” Nat. Phys.3(2), 101–106 (2007).
[CrossRef]

2006

J. Elser, R. Wangberg, V. A. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89(26), 261102 (2006).
[CrossRef]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
[CrossRef]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006).
[CrossRef] [PubMed]

2005

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
[CrossRef]

2004

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E.70(4), 046608 (2004).
[CrossRef] [PubMed]

2003

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

1980

P. Yeh, “Optics of anisotropic layered media: a new 4x4 matrix algebra,” Surf. Sci.96(1-3), 41–53 (1980).
[CrossRef]

Alekseyev, L. V.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010).
[CrossRef]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008).
[CrossRef] [PubMed]

Atatüre, M.

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of Faraday rotation from a single confined spin,” Nat. Phys.3(2), 101–106 (2007).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, R. Atkinson, and L. M. Eng, “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Opt. Express16(26), 21671–21681 (2008).
[CrossRef] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
[CrossRef]

Atrashchenko, A. V.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater.24(31), 4229–4248 (2012).
[CrossRef] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Badolato, A.

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of Faraday rotation from a single confined spin,” Nat. Phys.3(2), 101–106 (2007).
[CrossRef]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Barnakov, Yu. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010).
[CrossRef]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Belov, P. A.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater.24(31), 4229–4248 (2012).
[CrossRef] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012).
[CrossRef]

Berkovitch, N.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Bostwick, A.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Cao, J. X.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Chang, W. S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Cheng, Q.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
[CrossRef] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Cortes, C. L.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Crassee, I.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Crozier, K. B.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett.12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Cui, T. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
[CrossRef] [PubMed]

Cummer, S. A.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
[CrossRef] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Dickson, W.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
[CrossRef]

Dreiser, J.

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of Faraday rotation from a single confined spin,” Nat. Phys.3(2), 101–106 (2007).
[CrossRef]

Drezet, A.

Ebbesen, T. W.

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008).
[CrossRef] [PubMed]

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett.12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Elser, J.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89(26), 261102 (2006).
[CrossRef]

Eng, L. M.

Engheta, N.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008).
[CrossRef] [PubMed]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006).
[CrossRef] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
[CrossRef]

Evans, P. R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, R. Atkinson, and L. M. Eng, “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Opt. Express16(26), 21671–21681 (2008).
[CrossRef] [PubMed]

Falkner, M.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

Fedotov, V. A.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Genet, C.

Giessen, H.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

Ginzburg, P.

P. Ginzburg, F. J. Rodríguez-Fortuño, A. Martínez, and A. V. Zayats, “Analogue of the quantum Hanle effect and polarization conversion in non-Hermitian plasmonic metamaterials,” Nano Lett.12(12), 6309–6314 (2012).
[CrossRef] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012).
[CrossRef]

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

P. Ginzburg and M. Orenstein, “Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures,” J. Appl. Phys.103(8), 083105 (2008).
[CrossRef]

P. Ginzburg and M. Orenstein, “Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification,” J. Appl. Phys.104(6), 063513 (2008).
[CrossRef]

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
[CrossRef] [PubMed]

Grafström, S.

Halas, N. J.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Hand, T.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
[CrossRef] [PubMed]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Helgert, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Hendren, W. R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, R. Atkinson, and L. M. Eng, “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Opt. Express16(26), 21671–21681 (2008).
[CrossRef] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
[CrossRef]

Hentschel, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Hille, A.

Imamoglu, A.

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of Faraday rotation from a single confined spin,” Nat. Phys.3(2), 101–106 (2007).
[CrossRef]

Jacob, Z.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Khatua, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Kivshar, Y. S.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater.24(31), 4229–4248 (2012).
[CrossRef] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012).
[CrossRef]

Kley, E. B.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Kullock, R.

Kuzmenko, A. B.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Laluet, J. Y.

Lassiter, J. B.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Lederer, F.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

Lerman, G. M.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Levallois, J.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Levy, U.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Li, H.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010).
[CrossRef]

Li, T.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Link, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Liu, H.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Liu, N.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

Liu, R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
[CrossRef] [PubMed]

Marel, D.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Martínez, A.

P. Ginzburg, F. J. Rodríguez-Fortuño, A. Martínez, and A. V. Zayats, “Analogue of the quantum Hanle effect and polarization conversion in non-Hermitian plasmonic metamaterials,” Nano Lett.12(12), 6309–6314 (2012).
[CrossRef] [PubMed]

Menzel, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

Mock, J. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
[CrossRef] [PubMed]

Molesky, S.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Murphy, A.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

Narimanov, E.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89(26), 261102 (2006).
[CrossRef]

Narimanov, E. E.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
[CrossRef]

Nevet, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

Newman, W.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Noginov, M. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010).
[CrossRef]

Nordlander, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Normatov, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Orenstein, M.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

P. Ginzburg and M. Orenstein, “Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification,” J. Appl. Phys.104(6), 063513 (2008).
[CrossRef]

P. Ginzburg and M. Orenstein, “Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures,” J. Appl. Phys.103(8), 083105 (2008).
[CrossRef]

Ostler, M.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pertsch, T.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

Plum, E.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

Poddubny, A. N.

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012).
[CrossRef]

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89(26), 261102 (2006).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
[CrossRef]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R. J.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, R. Atkinson, and L. M. Eng, “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Opt. Express16(26), 21671–21681 (2008).
[CrossRef] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
[CrossRef]

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Pshenay-Severin, E.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Ren, M.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

Rodríguez-Fortuño, F. J.

P. Ginzburg, F. J. Rodríguez-Fortuño, A. Martínez, and A. V. Zayats, “Analogue of the quantum Hanle effect and polarization conversion in non-Hermitian plasmonic metamaterials,” Nano Lett.12(12), 6309–6314 (2012).
[CrossRef] [PubMed]

Rotenberg, E.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Schäferling, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett.12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Seyller, T.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008).
[CrossRef] [PubMed]

Silveirinha, M. G.

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006).
[CrossRef] [PubMed]

Simovski, C. R.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater.24(31), 4229–4248 (2012).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
[CrossRef] [PubMed]

Sobhani, H.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Swanglap, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Tumkur, T.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010).
[CrossRef]

Tünnermann, A.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Walter, A. L.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Wang, F.

T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Wang, S.

T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Wang, S. M.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

Wangberg, R.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89(26), 261102 (2006).
[CrossRef]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Weiss, T.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
[CrossRef] [PubMed]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
[CrossRef]

Xu, J.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

Yanai, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, “Optics of anisotropic layered media: a new 4x4 matrix algebra,” Surf. Sci.96(1-3), 41–53 (1980).
[CrossRef]

Yin, X.

T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008).
[CrossRef] [PubMed]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012).
[CrossRef]

P. Ginzburg, F. J. Rodríguez-Fortuño, A. Martínez, and A. V. Zayats, “Analogue of the quantum Hanle effect and polarization conversion in non-Hermitian plasmonic metamaterials,” Nano Lett.12(12), 6309–6314 (2012).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
[CrossRef]

Zhang, X.

T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

Zhu, S. N.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E.70(4), 046608 (2004).
[CrossRef] [PubMed]

Adv. Mater.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater.24(31), 4229–4248 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010).
[CrossRef]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89(26), 261102 (2006).
[CrossRef]

J. Appl. Phys.

P. Ginzburg and M. Orenstein, “Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures,” J. Appl. Phys.103(8), 083105 (2008).
[CrossRef]

P. Ginzburg and M. Orenstein, “Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification,” J. Appl. Phys.104(6), 063513 (2008).
[CrossRef]

J. Opt.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Nano Lett.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett.12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11(10), 4400–4404 (2011).
[CrossRef] [PubMed]

P. Ginzburg, F. J. Rodríguez-Fortuño, A. Martínez, and A. V. Zayats, “Analogue of the quantum Hanle effect and polarization conversion in non-Hermitian plasmonic metamaterials,” Nano Lett.12(12), 6309–6314 (2012).
[CrossRef] [PubMed]

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Nat. Commun.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Nat. Mater.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011).
[CrossRef] [PubMed]

Nat. Photonics

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Nat. Phys.

M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu, “Observation of Faraday rotation from a single confined spin,” Nat. Phys.3(2), 101–106 (2007).
[CrossRef]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys.7(1), 48–51 (2011).
[CrossRef]

Opt. Express

Phys. Rev. B

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B73(23), 235402 (2006).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005).
[CrossRef]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012).
[CrossRef]

Phys. Rev. E.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E.70(4), 046608 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008).
[CrossRef] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008).
[CrossRef] [PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Science

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Surf. Sci.

P. Yeh, “Optics of anisotropic layered media: a new 4x4 matrix algebra,” Surf. Sci.96(1-3), 41–53 (1980).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2000).

A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials, (World Scientific, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic view of the plasmonic nanorod metamaterial layer for polarization control in reflection or transmission. (b) Geometry and definitions for elipsometric parameters. (c) Real (red) and imaginary (blue) parts of the effective permittivity tensor components ε and ε|| of the metamaterial. The metamaterial consists of Au nanorods deposited within aluminium oxide matrix, nanorod height and diameter are 350 nm and 30 nm, respectively, nanorod spacing is 60 nm. Spectral ranges of elliptic and hyperbolic dispersions are also indicated.

Fig. 2
Fig. 2

Parametric plots for polarization conversion of p-polarized incident light in (a,b) reflection and (c,d) transmission configurations: red-dashed curves correspond Δ = π/2, blue-doted curves to Δ = π, green-solid curves to |ξ| = 1. The linearly polarized light is incident from the air side. (a,c) The angle of incidence is φ = 60°. (b,d) The thickness is d = λ/20. Metamaterial parameters are: ε|| = 4 + 0.1i and Im( ε ) = 0.1. Black crosses are the intersections corresponding to conversion to circular polarization (red-green lines intersection) and to 90° linear polarization rotation (blue-green lines intersection). (e,f) 3D plots of Ψ and Δ ellipsometric parameters (in degrees) for reflected light as the function of layer thickness d/λ and Re( ε ). The incident light is p-polarized. The angle of incidence is 60°. Spectral ranges of elliptic and hyperbolic dispersions are also indicated.

Fig. 3
Fig. 3

(a,c,e) Experimental and (b,d,f) theoretical spectra of (a,b) extinction and (c,d) reflection for p-polarized (solid lines) and s-polarized (dashed lines) light for different incidence angles. (e,f) The spectra of ellipsometric parameters Δ (solid lines) and Ψ (dashed lines) for different incidence angles. Metamaterial parameters are as in Fig. 1(c). Spectral ranges of elliptic and hyperbolic dispersions are also indicated.

Fig. 4
Fig. 4

All-optical control of polarization conversion in the metamaterial upon reflection for different wavelengths: the dependences of (blue lines) rotation angle Δ and (red lines) amplitude angle ψ on the electron temperature in Au nanorods. Metamaterial parameters are as in Fig. 1(c). The metamaterial layer thickness is d/λ = 1/20 and the angle of incidence is φ = 60°

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε =( ε ε ε ),
r p = ( 1 k z,sub /( ε sub k 0z ) )itan( k zp d )( ε k z,sub /( ε sub k zp ) k zp /( ε k zp ) ) ( 1+ k z,sub /( ε sub k 0z ) )itan( k zp d )( ε k z,sub /( ε sub k zp )+ k zp /( ε k zp ) )
r s = ( 1 k z,sub /( ε sub k 0z ) )itan( k zs d )( ε k z,sub /( ε sub k zs ) k zs /( ε k zp ) ) ( 1+ k z,sub /( ε sub k 0z ) )itan( k zs d )( ε k z,sub /( ε sub k zs )+ k zs /( ε k zp ) ) ,
ξ= r p r s =tan( ψ ) e iΔ ,

Metrics