Abstract

We propose and analyze an innovative device called “Hybrid-Super-Hyperlens”. This lens is made of two hyperbolic metamaterials with different signs in their dielectric tensor and different isofrequency dispersion curves. The ability of the proposed lens to break the optical diffraction limit is demonstrated using numerical simulations (with the resolution power of about λ/6). Both a pair of nano-slits and a nano-ring can be imaged and resolved by the proposed lens using the radially polarized light source. Such a lens has great potential applications in photolithography and real-time nanoscale imaging.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Press, 1999).
  2. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  3. D. P. Tsai, H. E. Jackson, R. Reddick, S. Sharp, and R. J. Warmack, “Photon scanning tunneling microscope study of optical wave-guides,” Appl. Phys. Lett.56(16), 1515–1517 (1990).
    [CrossRef]
  4. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
    [CrossRef] [PubMed]
  5. D. P. Tsai, J. Kovacs, and M. Moskovits, “Applications of apertured photon scanning-tunneling-microscopy (APSTM),” Ultramicroscopy57(2-3), 130–140 (1995).
    [CrossRef]
  6. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
    [CrossRef] [PubMed]
  7. S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
    [CrossRef]
  8. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
    [CrossRef]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  10. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
    [CrossRef]
  12. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003).
    [CrossRef]
  13. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B72(19), 193101 (2005).
    [CrossRef]
  14. A. Schilling, J. Schilling, C. Reinhardt, and B. Chichkov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett.95(12), 121909 (2009).
    [CrossRef]
  15. D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys.7, 162 (2005).
    [CrossRef]
  16. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
    [CrossRef]
  17. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
    [CrossRef]
  18. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
    [CrossRef] [PubMed]
  19. J. Yao, K. T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y. L. Wang, and X. Zhang, “Imaging visible light using anisotropic metamaterial slab lens,” Opt. Express17(25), 22380–22385 (2009).
    [CrossRef] [PubMed]
  20. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
    [CrossRef] [PubMed]
  21. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
    [CrossRef] [PubMed]
  22. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  23. B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  24. Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging,” Opt. Express20(20), 22953–22960 (2012).
    [CrossRef] [PubMed]
  25. H. Wu, T. W. Odom, and G. M. Whitesides, “Reduction Photolithography Using Microlens Arrays: Applications in Gray Scale Photolithography,” Anal. Chem.74(14), 3267–3273 (2002).
    [CrossRef] [PubMed]
  26. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
    [CrossRef] [PubMed]
  27. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, Oxford, 2006).
  28. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  29. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
    [CrossRef]
  30. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  31. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express12(25), 6106–6121 (2004).
    [CrossRef] [PubMed]
  32. N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express19(17), 15982–15989 (2011).
    [CrossRef] [PubMed]
  33. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express17(16), 14001–14014 (2009).
    [CrossRef] [PubMed]

2012

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
[CrossRef] [PubMed]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging,” Opt. Express20(20), 22953–22960 (2012).
[CrossRef] [PubMed]

2011

2010

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

2009

2007

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

2006

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

2005

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys.7, 162 (2005).
[CrossRef]

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B72(19), 193101 (2005).
[CrossRef]

2004

2003

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003).
[CrossRef]

2002

H. Wu, T. W. Odom, and G. M. Whitesides, “Reduction Photolithography Using Microlens Arrays: Applications in Gray Scale Photolithography,” Anal. Chem.74(14), 3267–3273 (2002).
[CrossRef] [PubMed]

2000

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

1998

1996

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

1995

S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
[CrossRef]

D. P. Tsai, J. Kovacs, and M. Moskovits, “Applications of apertured photon scanning-tunneling-microscopy (APSTM),” Ultramicroscopy57(2-3), 130–140 (1995).
[CrossRef]

1994

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
[CrossRef] [PubMed]

1991

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

1990

D. P. Tsai, H. E. Jackson, R. Reddick, S. Sharp, and R. J. Warmack, “Photon scanning tunneling microscope study of optical wave-guides,” Appl. Phys. Lett.56(16), 1515–1517 (1990).
[CrossRef]

Alekseyev, L. V.

Bartal, G.

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Botet, R.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
[CrossRef] [PubMed]

Cai, W.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B72(19), 193101 (2005).
[CrossRef]

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
[CrossRef] [PubMed]

Cheng, B. H.

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging,” Opt. Express20(20), 22953–22960 (2012).
[CrossRef] [PubMed]

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Chichkov, B.

A. Schilling, J. Schilling, C. Reinhardt, and B. Chichkov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett.95(12), 121909 (2009).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Dennis, M. R.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
[CrossRef] [PubMed]

Djurisic, A. B.

Elazar, J. M.

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
[CrossRef]

Fang, L.

Feng, Q.

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Genov, D. A.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B72(19), 193101 (2005).
[CrossRef]

Hao, Z. H.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Ho, Y. Z.

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging,” Opt. Express20(20), 22953–22960 (2012).
[CrossRef] [PubMed]

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Hung, Y.-J.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Im, H.

Inouye, Y.

S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
[CrossRef]

Jackson, H. E.

D. P. Tsai, H. E. Jackson, R. Reddick, S. Sharp, and R. J. Warmack, “Photon scanning tunneling microscope study of optical wave-guides,” Appl. Phys. Lett.56(16), 1515–1517 (1990).
[CrossRef]

Jacob, Z.

Jones, R. J.

Kato, J.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Kawata, S.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
[CrossRef]

Kim, N. C.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Kobyakov, A.

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Kovacs, J.

D. P. Tsai, J. Kovacs, and M. Moskovits, “Applications of apertured photon scanning-tunneling-microscopy (APSTM),” Ultramicroscopy57(2-3), 130–140 (1995).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
[CrossRef] [PubMed]

Lai, Z.

Lan, Y. C.

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging,” Opt. Express20(20), 22953–22960 (2012).
[CrossRef] [PubMed]

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Lesuffleur, A.

Li, J. B.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Li, M.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Lindberg, J.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
[CrossRef] [PubMed]

Lindquist, N. C.

Liu, Z.

J. Yao, K. T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y. L. Wang, and X. Zhang, “Imaging visible light using anisotropic metamaterial slab lens,” Opt. Express17(25), 22380–22385 (2009).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Luan, P. G.

Luo, X.

Majewski, M. L.

Mansuripur, M.

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Moloney, J. V.

Moskovits, M.

D. P. Tsai, J. Kovacs, and M. Moskovits, “Applications of apertured photon scanning-tunneling-microscopy (APSTM),” Ultramicroscopy57(2-3), 130–140 (1995).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
[CrossRef] [PubMed]

Narimanov, E.

Odom, T. W.

H. Wu, T. W. Odom, and G. M. Whitesides, “Reduction Photolithography Using Microlens Arrays: Applications in Gray Scale Photolithography,” Anal. Chem.74(14), 3267–3273 (2002).
[CrossRef] [PubMed]

Oh, S. H.

Ono, A.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Peng, X. N.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Rakic, A. D.

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003).
[CrossRef]

Reddick, R.

D. P. Tsai, H. E. Jackson, R. Reddick, S. Sharp, and R. J. Warmack, “Photon scanning tunneling microscope study of optical wave-guides,” Appl. Phys. Lett.56(16), 1515–1517 (1990).
[CrossRef]

Reinhardt, C.

A. Schilling, J. Schilling, C. Reinhardt, and B. Chichkov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett.95(12), 121909 (2009).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Rogers, E. T. F.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
[CrossRef] [PubMed]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003).
[CrossRef]

Roy, T.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
[CrossRef] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
[CrossRef]

Savo, S.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
[CrossRef] [PubMed]

Schilling, A.

A. Schilling, J. Schilling, C. Reinhardt, and B. Chichkov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett.95(12), 121909 (2009).
[CrossRef]

Schilling, J.

A. Schilling, J. Schilling, C. Reinhardt, and B. Chichkov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett.95(12), 121909 (2009).
[CrossRef]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003).
[CrossRef]

Schurig, D.

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys.7, 162 (2005).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003).
[CrossRef]

Shalaev, V. M.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B72(19), 193101 (2005).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
[CrossRef] [PubMed]

Sharp, S.

D. P. Tsai, H. E. Jackson, R. Reddick, S. Sharp, and R. J. Warmack, “Photon scanning tunneling microscope study of optical wave-guides,” Appl. Phys. Lett.56(16), 1515–1517 (1990).
[CrossRef]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Smith, D. R.

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys.7, 162 (2005).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Su, X. R.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Tsai, D. P.

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging,” Opt. Express20(20), 22953–22960 (2012).
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

D. P. Tsai, J. Kovacs, and M. Moskovits, “Applications of apertured photon scanning-tunneling-microscopy (APSTM),” Ultramicroscopy57(2-3), 130–140 (1995).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
[CrossRef] [PubMed]

D. P. Tsai, H. E. Jackson, R. Reddick, S. Sharp, and R. J. Warmack, “Photon scanning tunneling microscope study of optical wave-guides,” Appl. Phys. Lett.56(16), 1515–1517 (1990).
[CrossRef]

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Tsai, K. T.

Wang, C.

Wang, Q. Q.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Wang, Y.

Wang, Y. L.

Wang, Y. T.

Wang, Z.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
[CrossRef] [PubMed]

Warmack, R. J.

D. P. Tsai, H. E. Jackson, R. Reddick, S. Sharp, and R. J. Warmack, “Photon scanning tunneling microscope study of optical wave-guides,” Appl. Phys. Lett.56(16), 1515–1517 (1990).
[CrossRef]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Whitesides, G. M.

H. Wu, T. W. Odom, and G. M. Whitesides, “Reduction Photolithography Using Microlens Arrays: Applications in Gray Scale Photolithography,” Anal. Chem.74(14), 3267–3273 (2002).
[CrossRef] [PubMed]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

Wu, H.

H. Wu, T. W. Odom, and G. M. Whitesides, “Reduction Photolithography Using Microlens Arrays: Applications in Gray Scale Photolithography,” Anal. Chem.74(14), 3267–3273 (2002).
[CrossRef] [PubMed]

Xie, Y.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Yang, Z. J.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Yao, J.

Yao, N.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Yu, X. F.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Zakharian, A. R.

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Zhan, Q.

Zhang, X.

J. Yao, K. T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y. L. Wang, and X. Zhang, “Imaging visible light using anisotropic metamaterial slab lens,” Opt. Express17(25), 22380–22385 (2009).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Zhang, Z. S.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Zhao, Z.

Zheludev, N. I.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
[CrossRef] [PubMed]

Zhou, L.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Zhou, Z. K.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

ACS Nano

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Anal. Chem.

H. Wu, T. W. Odom, and G. M. Whitesides, “Reduction Photolithography Using Microlens Arrays: Applications in Gray Scale Photolithography,” Anal. Chem.74(14), 3267–3273 (2002).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

A. Schilling, J. Schilling, C. Reinhardt, and B. Chichkov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett.95(12), 121909 (2009).
[CrossRef]

D. P. Tsai, H. E. Jackson, R. Reddick, S. Sharp, and R. J. Warmack, “Photon scanning tunneling microscope study of optical wave-guides,” Appl. Phys. Lett.56(16), 1515–1517 (1990).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (to be published).

IEEE Trans. Microw. Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. Chem. Phys.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Nat. Mater.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012).
[CrossRef] [PubMed]

New J. Phys.

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys.7, 162 (2005).
[CrossRef]

Opt. Express

Phys. Rev. B

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
[CrossRef]

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B72(19), 193101 (2005).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
[CrossRef] [PubMed]

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Science

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Ultramicroscopy

S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
[CrossRef]

D. P. Tsai, J. Kovacs, and M. Moskovits, “Applications of apertured photon scanning-tunneling-microscopy (APSTM),” Ultramicroscopy57(2-3), 130–140 (1995).
[CrossRef]

Other

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, Oxford, 2006).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the hybrid-super-hyperlens which is composed of two hyperbolic metamaterials (i.e., superlens and hyperlens) with different dielectric tensor under TM wave illumination at 405 nm. The upper part is superlens which consists of 6 paris of alternately stacked Ag (30 nm) and Al2O3 (30 nm) layers, the lower part is hyperlens that is composed of 8 pairs of alternately stacked Ag (30 nm) and HfO2 (30 nm) layers. The orange parts are observed sample with thickness t = 60 nm. The width of grooves carved on the Chromium (Cr) is 50 nm.

Fig. 2
Fig. 2

Isofrequency dispersion curves for light propagating in superlens structure with λ = 405 nm. The solid red and dashed blue lines denote the isofrequency curves obtained from Eq. (1) and Eq. (2), respectively. The constructed parameters of superlens are listed in caption of Fig. 1.

Fig. 3
Fig. 3

Plots of polarization directions of imported radially-polarized beam used in simulation.

Fig. 4
Fig. 4

Simulated time-averaged power flow contours (left) and normalized power intensity versus x position measured at the cross section dashed line (right) for incident wavelengths of (a) 532 nm (b) 632.8 nm and (c) 650 nm. Green dotted lines in right figures indicate positions of slits with 50 nm width.

Fig. 5
Fig. 5

Simulated Power flow images of (a) a pair of nano-slits and (b) a nano-ring that covered on the Chromium with linearly polarized incident light. The center to center distance of the nano-slits pattern is 140 nm, and the width of the slit is 50 nm. The inner and outer radius of the nano-ring is 70 and 120 nm, respectively. Images are recorded at 20 nm below the outer surface of sphere-shape hyperlens.

Fig. 6
Fig. 6

Simulated power flow images of (a) a pair of nano-slits and (b) a nano-ring with radially polarized incident light. Simulation parameters and observation plane are the same as in Fig. 5.

Tables (1)

Tables Icon

Table 1 Parameters of the hybrid-super-hyperlens at variant incident wavelength

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

cos( k x Λ)=cos( k 1x d 1 )cos( k 2x d 2 ) 1 2 ( ε 1 k 2x ε 2 k 1x + ε 2 k 1x ε 1 k 2x )sin( k 1x d 1 )sin( k 2x d 2 )
k x 2 ε zeff + k z 2 ε xeff = k 0 2
ε(ω)=1 ω p 2 ω 2 +i γ p ω + j=1 k f j ω j 2 ω j 2 ω 2 2 i γ j ω
E x (r,θ)= e r 2 /4 σ 2 cosθ
E y (r,θ)= e r 2 /4 σ 2 sinθ

Metrics