Abstract

A design of ultra-short integrated polarization rotator (PR) with nonlinear and flat-tip tapers is demonstrated theoretically. Based on mode-evolution theory and three-dimensional (3D) finite-difference time-domain (FDTD) simulation, raised cosine profiled tapers are introduced and optimized in the transition region, which improve the polarized modes coupling and decrease the conversion length to 6 μm for the wavelength of 1.55 μm. Numerical simulations obtain extinction ratio of 32 dB and loss of 0.14 dB with practical material parameters. The method and result presented here can be extremely valuable for applications in polarization diversity circuits.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  2. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011).
    [CrossRef] [PubMed]
  3. C. Fietz and G. Shvets, “Nonlinear polarization conversion using microring resonators,” Opt. Lett.32(12), 1683–1685 (2007).
    [CrossRef] [PubMed]
  4. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
    [CrossRef] [PubMed]
  5. Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B25(5), 747–753 (2008).
    [CrossRef]
  6. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
    [CrossRef]
  7. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett.30(2), 138–140 (2005).
    [CrossRef] [PubMed]
  8. H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
    [CrossRef]
  9. J. H. Fan, C. G. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” Aip Adv1(4), 042136 (2011).
    [CrossRef]
  10. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express16(4), 2628–2635 (2008).
    [CrossRef] [PubMed]
  11. N. N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett.32(15), 2131–2133 (2007).
    [CrossRef] [PubMed]
  12. J. Yamauchi, M. Yamanoue, and H. Nakano, “A short polarization converter using a triangular waveguide,” J. Lightwave Technol.26(12), 1708–1714 (2008).
    [CrossRef]
  13. A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Moñux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett.37(3), 365–367 (2012).
    [CrossRef] [PubMed]
  14. J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett.37(17), 3711–3713 (2012).
    [CrossRef] [PubMed]
  15. M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” Ieee Photonics J4(3), 707–714 (2012).
    [CrossRef]
  16. J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photonic Tech L23(21), 1606–1608 (2011).
    [CrossRef]
  17. W. G. Lawson, “Theoretical evaluation of nonlinear tapers for a high-power gyrotron,” IEEE T Microw Theory38(11), 1617–1622 (1990).
    [CrossRef]

2012 (4)

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” Ieee Photonics J4(3), 707–714 (2012).
[CrossRef]

A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Moñux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett.37(3), 365–367 (2012).
[CrossRef] [PubMed]

J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett.37(17), 3711–3713 (2012).
[CrossRef] [PubMed]

2011 (4)

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011).
[CrossRef] [PubMed]

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photonic Tech L23(21), 1606–1608 (2011).
[CrossRef]

J. H. Fan, C. G. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” Aip Adv1(4), 042136 (2011).
[CrossRef]

2008 (3)

2007 (3)

2005 (1)

2004 (1)

1990 (1)

W. G. Lawson, “Theoretical evaluation of nonlinear tapers for a high-power gyrotron,” IEEE T Microw Theory38(11), 1617–1622 (1990).
[CrossRef]

Almeida, V. R.

Ambrosius, H.

Barrios, C. A.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Bowers, J. E.

Calvo, M. L.

Cheben, P.

Chen, S. Y.

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photonic Tech L23(21), 1606–1608 (2011).
[CrossRef]

Dai, D.

Dai, D. X.

Das, S.

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Fan, J. H.

J. H. Fan, C. G. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” Aip Adv1(4), 042136 (2011).
[CrossRef]

Feng, N. N.

Fernandez, I. M.

Fietz, C.

Fukuda, H.

Haus, H. A.

Huang, C. G.

J. H. Fan, C. G. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” Aip Adv1(4), 042136 (2011).
[CrossRef]

Huang, Y.

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Itabashi, S.

Janz, S.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Keyvaninia, S.

Kimerling, L. C.

Komatsu, M.

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” Ieee Photonics J4(3), 707–714 (2012).
[CrossRef]

Koshiba, M.

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” Ieee Photonics J4(3), 707–714 (2012).
[CrossRef]

Kwong, D. L.

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photonic Tech L23(21), 1606–1608 (2011).
[CrossRef]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

Lapointe, J.

Lawson, W. G.

W. G. Lawson, “Theoretical evaluation of nonlinear tapers for a high-power gyrotron,” IEEE T Microw Theory38(11), 1617–1622 (1990).
[CrossRef]

Li, C.

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Liow, T. Y.

Lipson, M.

Lo, G. Q.

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photonic Tech L23(21), 1606–1608 (2011).
[CrossRef]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

Lo, P. G. Q.

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Michel, J.

Nakano, H.

Ortega-Moñux, A.

Pello, J.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Ramos, C. A.

Roelkens, G.

Saitoh, K.

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” Ieee Photonics J4(3), 707–714 (2012).
[CrossRef]

Schmid, J. H.

Shinojima, H.

Shvets, G.

Smit, M.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Sun, R.

Thong, J. T. L.

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Tsuchizawa, T.

Vachon, M.

van der Tol, J.

van Veldhoven, R.

Velasco, A. V.

Wang, Z. C.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett.30(2), 138–140 (2005).
[CrossRef] [PubMed]

Xu, D. X.

Xu, Q.

Yamada, K.

Yamanoue, M.

Yamauchi, J.

Yu, M. B.

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Zhang, H. J.

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photonic Tech L23(21), 1606–1608 (2011).
[CrossRef]

Zhang, J.

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photonic Tech L23(21), 1606–1608 (2011).
[CrossRef]

Zhou, H. F.

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Zhu, L.

J. H. Fan, C. G. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” Aip Adv1(4), 042136 (2011).
[CrossRef]

Zhu, S.

Zhu, S. Y.

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photonic Tech L23(21), 1606–1608 (2011).
[CrossRef]

Aip Adv (1)

J. H. Fan, C. G. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” Aip Adv1(4), 042136 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

H. J. Zhang, S. Das, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

IEEE Photonic Tech L (1)

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photonic Tech L23(21), 1606–1608 (2011).
[CrossRef]

Ieee Photonics J (1)

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” Ieee Photonics J4(3), 707–714 (2012).
[CrossRef]

IEEE T Microw Theory (1)

W. G. Lawson, “Theoretical evaluation of nonlinear tapers for a high-power gyrotron,” IEEE T Microw Theory38(11), 1617–1622 (1990).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the polarization rotator consisting of the input horizontal slot waveguide, the nonlinearly tapered converter and the output strip waveguide. (b) The top view of nonlinear polarization rotator with a flat tip. (c) The width of the raised cosine profiled taper versus z axis with function coefficient α=0.3 and σ=0.1 .

Fig. 2
Fig. 2

(a) The input TM mode and (b) the output TE mode electric intensity distribution. The double-headed arrows in (a) and (b) refer to the polarization directions of TM and TE modes, respectively.

Fig. 3
Fig. 3

The effective refractive index of (a) TM fundamental mode in the slot waveguide and (b) TE fundamental mode in the strip waveguide. The blue dashed lines refer to a linear taper and the red solid lines refer to a raised cosine profiled taper structure. The raised cosine coefficients are α=0.5 and σ=0.1 .

Fig. 4
Fig. 4

(a) The absolute value of difference of propagation constants as a function of conversion length z. (b) The average differences of propagation constants | δβ ¯ | as a function of conversion length z. The blue dashed line and the red solid line refers to linear taper and raised cosine profiled taper structure, respectively.

Fig. 5
Fig. 5

(a)TM-TE conversion from TM to TE mode as a function of raised cosine function coefficient σ, when α=0.5 . (b)TM-TE conversion from TM to TE mode as a function of the device length with three different structures: the original linear taper polarization rotator, the linear taper with flat tip and the nonlinear taper structure.

Fig. 6
Fig. 6

Wavelength dependence of polarization extinction ratio and loss for both TM to TE conversion (red solid line) and TE to TM conversion (blue dashed line). The device length is 6μm, α=0.5 and σ=0.1 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d b m (z) dz j β m (z) b m (z)= b n (0) C nm (z)exp[ j 0 z β n (z)dz ]
b m (z)= b n (0)exp[ j 0 z β m ( z )d z ]× 0 z C mn ( z ) exp[j δβ ¯ (z) z ]d z
P m (z)= | b n (0) | 2 [ F 2 (z)+ F 2 (0)2F(z)F(0)cos( δβ ¯ z)]
r(z)={ r S + r 1 (1cos z z s z 1 ) σ 1 ( z s <z< z s + z 1 ) r E r 2 (1cos z e z z 2 ) σ 2 ( z s + z 1 <z< z e )

Metrics