Abstract

We theoretically investigate the possible increase of the second harmonic generation (SHG) efficiency in silicon compatible waveguides by considering an asymmetrical plasmonic slot waveguide geometry and a χ(2) nonlinear polymer infiltrating the slot. The needed phase matching condition is satisfied between the fundamental waveguide mode at the fundamental frequency (FF) and second-order waveguide mode at the second harmonic frequency (SHF) by an appropriate design of the waveguide opto-geometrical parameters. The SHG signal generated in our starting waveguide is three orders of magnitude higher than those previously reported for a FF corresponding to λ = 1550 nm. Then, the SHG performance was further improved by increasing the asymmetry of the structure where nonlinear coupling coefficients as large as 292 psm−1W-1/2 are predicted. The device length is shorter than 20 µm and the normalized SHG conversion efficiency comes up to more than 1 × 105 W−1cm−2.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zalevsky and I. Abdulhalim, Integrated Nanophotonic Devices (Elsevier, 2010).
  2. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
    [CrossRef]
  3. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  4. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
    [CrossRef] [PubMed]
  5. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express19(12), 11415–11421 (2011).
    [CrossRef] [PubMed]
  6. R. E. P. de Oliveira, M. Lipson, and C. J. S. de Matos, “Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation,” in CLEO: Science and Innovations (Optical Society of America, 2012).
  7. T. Y. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett.37(20), 4269–4271 (2012).
    [CrossRef] [PubMed]
  8. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  9. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
    [CrossRef] [PubMed]
  10. W. S. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
    [CrossRef] [PubMed]
  11. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express17(22), 20063–20068 (2009).
    [CrossRef] [PubMed]
  12. S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonlinear frequency conversion processes in plasmonic slot waveguides,” J. Opt. Soc. Am. B29(7), 1606–1611 (2012).
    [CrossRef]
  13. Z. Wu, X. Hu, Z. Yu, W. Hu, F. Xu, and Y. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010).
    [CrossRef]
  14. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett.36(17), 3371–3373 (2011).
    [CrossRef] [PubMed]
  15. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92(5), 057402 (2004).
    [CrossRef] [PubMed]
  16. P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett.35(23), 4063–4065 (2010).
    [CrossRef] [PubMed]
  17. B. Z. Steinberg, “Parametric plasmonics and second harmonic generation in particle chains,” Opt. Express19(27), 25843–25853 (2011).
    [CrossRef] [PubMed]
  18. J. Richter, A. Steinbrück, T. Pertsch, A. Tünnermann, and R. Grange, “Plasmonic core–shell nanowires for enhanced second-harmonic generation,” Plasmonics8, 115–120 (2012).
  19. G. T. Reed and A. P. Knights, Silicon Photonics (Wiley Online Library, 2008).
  20. T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics†,” J. Phys. Chem. C112(21), 8085–8090 (2008).
    [CrossRef]
  21. J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
    [CrossRef]
  22. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
    [CrossRef]
  23. L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express20(18), 20506–20515 (2012).
    [CrossRef] [PubMed]
  24. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
    [CrossRef]
  25. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
    [CrossRef]
  26. M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron.14(5), 1298–1311 (2008).
    [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  28. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett.35(4), 502–504 (2010).
    [CrossRef] [PubMed]
  29. R. Thomas, Z. Ikonic, and R. W. Kelsall, “Silicon based plasmonic coupler,” Opt. Express20(19), 21520–21531 (2012).
    [CrossRef] [PubMed]
  30. H. Kogenlnik, “2. Theory of dielectric waveguides,” in Integrated Optics (Springer Berlin / Heidelberg, 1975), pp. 13–81.
  31. G. Lifante and J. Wiley, Integrated Photonics: Fundamentals (Wiley Online Library, 2003).
  32. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express17(16), 13502–13515 (2009).
    [CrossRef] [PubMed]
  33. F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, “Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide,” Opt. Express19(4), 2858–2865 (2011).
    [CrossRef] [PubMed]
  34. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett.27(3), 179–181 (2002).
    [CrossRef] [PubMed]
  35. S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt.6(6), 569–584 (2004).
    [CrossRef]
  36. M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  37. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007).
    [CrossRef] [PubMed]

2012 (6)

2011 (7)

2010 (3)

2009 (4)

Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express17(16), 13502–13515 (2009).
[CrossRef] [PubMed]

A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express17(22), 20063–20068 (2009).
[CrossRef] [PubMed]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

2008 (2)

T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics†,” J. Phys. Chem. C112(21), 8085–8090 (2008).
[CrossRef]

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron.14(5), 1298–1311 (2008).
[CrossRef]

2007 (3)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
[CrossRef]

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007).
[CrossRef] [PubMed]

2004 (2)

S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt.6(6), 569–584 (2004).
[CrossRef]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92(5), 057402 (2004).
[CrossRef] [PubMed]

2002 (1)

1992 (1)

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Alloatti, L.

Anceau, C.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92(5), 057402 (2004).
[CrossRef] [PubMed]

Baehr-Jones, T. W.

T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics†,” J. Phys. Chem. C112(21), 8085–8090 (2008).
[CrossRef]

Baets, R.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Bergman, D. J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92(5), 057402 (2004).
[CrossRef] [PubMed]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Bonod, N.

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Brasselet, S.

P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett.35(23), 4063–4065 (2010).
[CrossRef] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92(5), 057402 (2004).
[CrossRef] [PubMed]

Brongersma, M. L.

W. S. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Brosi, J. M.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Cai, W. S.

W. S. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Cheng, Q. Q.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Davoyan, A. R.

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Derose, C. T.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Devaux, E.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Dumon, P.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Ebbesen, T. W.

Ebrahimzadeh, M.

S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt.6(6), 569–584 (2004).
[CrossRef]

Elezzabi, A. Y.

Enami, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Fan, S.

Fejer, M. M.

Foster, M. A.

Frank, B.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Freude, W.

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express20(18), 20506–20515 (2012).
[CrossRef] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Fujimura, M.

Gaeta, A. L.

Genty, G.

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Grange, R.

J. Richter, A. Steinbrück, T. Pertsch, A. Tünnermann, and R. Grange, “Plasmonic core–shell nanowires for enhanced second-harmonic generation,” Plasmonics8, 115–120 (2012).

Greenlee, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Gunter, P.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron.14(5), 1298–1311 (2008).
[CrossRef]

Han, Z.

Hasan, S. B.

Hochberg, M. J.

T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics†,” J. Phys. Chem. C112(21), 8085–8090 (2008).
[CrossRef]

Hu, W.

Z. Wu, X. Hu, Z. Yu, W. Hu, F. Xu, and Y. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010).
[CrossRef]

Hu, X.

Z. Wu, X. Hu, Z. Yu, W. Hu, F. Xu, and Y. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010).
[CrossRef]

Hu, X. P.

Hyvärinen, O.

Ikonic, Z.

Jazbinsek, M.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron.14(5), 1298–1311 (2008).
[CrossRef]

Jen, A. K.-Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jonasz, M.

Jundt, D. H.

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kaplas, T.

Kauranen, M.

Kelsall, R. W.

Kim, T. D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Kitamura, R.

Kivshar, Y. S.

Koos, C.

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express20(18), 20506–20515 (2012).
[CrossRef] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Korn, D.

Kumar, R.

Kurz, J. R.

Lederer, F.

Leuthold, J.

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express20(18), 20506–20515 (2012).
[CrossRef] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Levy, J. S.

Li, L.

Li, T.

Lipson, M.

Loychik, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Lu, F. F.

Lu, Y.

Z. Wu, X. Hu, Z. Yu, W. Hu, F. Xu, and Y. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010).
[CrossRef]

Luo, J.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Magel, G.

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Mathine, D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Moutzouris, K.

S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt.6(6), 569–584 (2004).
[CrossRef]

Mutter, L.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron.14(5), 1298–1311 (2008).
[CrossRef]

Ning, T. Y.

Norwood, R. A.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Parameswaran, K. R.

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Pertsch, T.

J. Richter, A. Steinbrück, T. Pertsch, A. Tünnermann, and R. Grange, “Plasmonic core–shell nanowires for enhanced second-harmonic generation,” Plasmonics8, 115–120 (2012).

S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonlinear frequency conversion processes in plasmonic slot waveguides,” J. Opt. Soc. Am. B29(7), 1606–1611 (2012).
[CrossRef]

Peyghambarian, N.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Pietarinen, H.

Pilon, L.

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Rao, S. V.

S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt.6(6), 569–584 (2004).
[CrossRef]

Richter, J.

J. Richter, A. Steinbrück, T. Pertsch, A. Tünnermann, and R. Grange, “Plasmonic core–shell nanowires for enhanced second-harmonic generation,” Plasmonics8, 115–120 (2012).

Rigneault, H.

Rockstuhl, C.

Roussev, R. V.

Route, R. K.

Ruan, Z.

Schön, P.

Scimeca, M. L.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Shadrivov, I. V.

Steinberg, B. Z.

Steinbrück, A.

J. Richter, A. Steinbrück, T. Pertsch, A. Tünnermann, and R. Grange, “Plasmonic core–shell nanowires for enhanced second-harmonic generation,” Plasmonics8, 115–120 (2012).

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92(5), 057402 (2004).
[CrossRef] [PubMed]

Thomas, R.

Tian, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Tünnermann, A.

J. Richter, A. Steinbrück, T. Pertsch, A. Tünnermann, and R. Grange, “Plasmonic core–shell nanowires for enhanced second-harmonic generation,” Plasmonics8, 115–120 (2012).

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Van, V.

Vasudev, A. P.

W. S. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Veronis, G.

Vodopyanov, K. L.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Weimann, C.

Wenger, J.

Wu, Z.

Z. Wu, X. Hu, Z. Yu, W. Hu, F. Xu, and Y. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010).
[CrossRef]

Xie, Z. D.

Xu, F.

Z. Wu, X. Hu, Z. Yu, W. Hu, F. Xu, and Y. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010).
[CrossRef]

Xu, J.

Yu, Z.

Z. Wu, X. Hu, Z. Yu, W. Hu, F. Xu, and Y. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010).
[CrossRef]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Zhu, S. N.

Zhu, Y. Y.

Zyss, J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92(5), 057402 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron.14(5), 1298–1311 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt.6(6), 569–584 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics†,” J. Phys. Chem. C112(21), 8085–8090 (2008).
[CrossRef]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Nat. Photonics (3)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Opt. Express (8)

Opt. Lett. (5)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Z. Wu, X. Hu, Z. Yu, W. Hu, F. Xu, and Y. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92(5), 057402 (2004).
[CrossRef] [PubMed]

Plasmonics (1)

J. Richter, A. Steinbrück, T. Pertsch, A. Tünnermann, and R. Grange, “Plasmonic core–shell nanowires for enhanced second-harmonic generation,” Plasmonics8, 115–120 (2012).

Proc. IEEE (1)

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Science (1)

W. S. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Other (7)

Z. Zalevsky and I. Abdulhalim, Integrated Nanophotonic Devices (Elsevier, 2010).

G. T. Reed and A. P. Knights, Silicon Photonics (Wiley Online Library, 2008).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

R. E. P. de Oliveira, M. Lipson, and C. J. S. de Matos, “Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation,” in CLEO: Science and Innovations (Optical Society of America, 2012).

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).

H. Kogenlnik, “2. Theory of dielectric waveguides,” in Integrated Optics (Springer Berlin / Heidelberg, 1975), pp. 13–81.

G. Lifante and J. Wiley, Integrated Photonics: Fundamentals (Wiley Online Library, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics