Abstract

We experimentally demonstrate an operation switchable Erbium-doped fiber laser by employing graphene saturable absorber (GSA) on microfiber. With the introducing of a polydimethylsiloxane layer, a graphene can be considered as a parallel plate on microfiber and induces different propagation losses to TE and TM modes. By the use of such polarization sensitive GSA on microfiber, Erbium doped fiber laser with switchable operation states such as continuous wave, stable Q-switching, Q-switched mode-locking, and continuous-wave mode-locking, can be achieved by simply tuning the polarization states in the laser cavity. Our results show that covering graphene on microfibers could be a promising method for fabricating all fiber SA, and may have high potential in wide applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrai, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
    [CrossRef]
  2. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett.18(13), 1080–1082 (1993).
    [CrossRef] [PubMed]
  3. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999).
    [CrossRef]
  4. K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G. R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009).
    [CrossRef] [PubMed]
  5. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
    [CrossRef]
  6. X. Yang and C. X. Yang, “Q-Switched mode-locking in an erbium-doped femtosecond fiber laser based on nonlinear polarization rotation,” Laser Phys.19(11), 2106–2109 (2009).
    [CrossRef]
  7. Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
    [CrossRef] [PubMed]
  8. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012).
    [CrossRef] [PubMed]
  9. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
    [CrossRef]
  10. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
    [CrossRef]
  11. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
    [CrossRef]
  12. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
    [CrossRef]
  13. Z. B. Liu, X. Y. He, and D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36(16), 3024–3026 (2011).
    [CrossRef] [PubMed]
  14. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
    [CrossRef]
  15. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
    [CrossRef]
  16. J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
    [CrossRef]
  17. G. Brambilla, F. Xu, P. Horak, Y. M. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and application,” Adv. Opt. Photon.1(1), 107–161 (2009).
    [CrossRef]
  18. X. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber bragg grating,” Opt. Lett.37(12), 2394–2396 (2012).
    [CrossRef] [PubMed]
  19. X. He, Z.-B. Liu, D. Wang, M. Yang, C. R. Liao, and X. Zhao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol.30(7), 984–989 (2012).
    [CrossRef]
  20. J. Wang, Z. Luo, M. Zhou, and C. Ye, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics J.4(5), 1295–1305 (2012).
    [CrossRef]
  21. Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
    [CrossRef]
  22. Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, and C. Haley, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
    [CrossRef]
  23. X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. S. Chen, and J. G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon56, 271–278 (2013).
    [CrossRef]

2013

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. S. Chen, and J. G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon56, 271–278 (2013).
[CrossRef]

2012

X. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber bragg grating,” Opt. Lett.37(12), 2394–2396 (2012).
[CrossRef] [PubMed]

X. He, Z.-B. Liu, D. Wang, M. Yang, C. R. Liao, and X. Zhao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol.30(7), 984–989 (2012).
[CrossRef]

J. Wang, Z. Luo, M. Zhou, and C. Ye, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics J.4(5), 1295–1305 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
[CrossRef] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012).
[CrossRef] [PubMed]

2011

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrai, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Z. B. Liu, X. Y. He, and D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36(16), 3024–3026 (2011).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, and C. Haley, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

2010

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

2009

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G. R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, P. Horak, Y. M. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and application,” Adv. Opt. Photon.1(1), 107–161 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

X. Yang and C. X. Yang, “Q-Switched mode-locking in an erbium-doped femtosecond fiber laser based on nonlinear polarization rotation,” Laser Phys.19(11), 2106–2109 (2009).
[CrossRef]

2004

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

1999

1993

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Bao, Q.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Bao, Q. L.

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, and C. Haley, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Brambilla, G.

Chen, X. D.

X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. S. Chen, and J. G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon56, 271–278 (2013).
[CrossRef]

Chen, Y. S.

X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. S. Chen, and J. G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon56, 271–278 (2013).
[CrossRef]

Cho, W. B.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012).
[CrossRef] [PubMed]

Debnath, P.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012).
[CrossRef] [PubMed]

Feng, M.

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

Feng, X.

Ferrai, A. C.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrai, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Ferrari, A. C.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012).
[CrossRef] [PubMed]

Grudinin, A.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

Haley, C.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, and C. Haley, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Hasan, T.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrai, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Haus, H. A.

He, X.

He, X. Y.

Hönninger, C.

Horak, P.

Ippen, E. P.

Jang, S. Y.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Jiang, W.-S.

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

Jung, Y. M.

Kang, J. J.

Keller, U.

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012).
[CrossRef] [PubMed]

Knize, R. J.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Koizumi, F.

Koo, J.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Koukharenko, E.

Lee, C. K.

Lee, J.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Lee, J. H.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Liao, C. R.

Lin, G. R.

Lin, K. H.

Liu, Y.-G.

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

Liu, Z. B.

Liu, Z.-B.

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

X. He, Z.-B. Liu, D. Wang, M. Yang, C. R. Liao, and X. Zhao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol.30(7), 984–989 (2012).
[CrossRef]

Loh, K.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Loh, K. P.

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
[CrossRef] [PubMed]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Luo, Z.

J. Wang, Z. Luo, M. Zhou, and C. Ye, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics J.4(5), 1295–1305 (2012).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Murugan, G. S.

Nelson, L. E.

Ni, Z.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Ni, Z. H.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, and C. Haley, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012).
[CrossRef] [PubMed]

Okhotnikov, O.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

Paschotta, R.

Pessa, M.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

Popa, D.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrai, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Richardson, D. J.

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012).
[CrossRef] [PubMed]

Sessions, N. P.

Shen, Z.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Sheng, Q.-W.

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

Song, Y. W.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Sun, Z.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrai, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Tamura, K.

Tang, D.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Tang, D. Y.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Tian, J. G.

X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. S. Chen, and J. G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon56, 271–278 (2013).
[CrossRef]

Tian, J.-G.

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

Torrisi, F.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrai, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Wang, B.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, and C. Haley, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Wang, D.

Wang, D. N.

Wang, F.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrai, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Wang, J.

J. Wang, Z. Luo, M. Zhou, and C. Ye, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics J.4(5), 1295–1305 (2012).
[CrossRef]

Wang, P.

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Wilkinson, J. S.

Wu, H. H.

Xin, W.

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

Xing, F.

X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. S. Chen, and J. G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon56, 271–278 (2013).
[CrossRef]

Xu, F.

Yan, X. Q.

X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. S. Chen, and J. G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon56, 271–278 (2013).
[CrossRef]

Yan, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Yang, C. X.

X. Yang and C. X. Yang, “Q-Switched mode-locking in an erbium-doped femtosecond fiber laser based on nonlinear polarization rotation,” Laser Phys.19(11), 2106–2109 (2009).
[CrossRef]

Yang, M.

Yang, X.

X. Yang and C. X. Yang, “Q-Switched mode-locking in an erbium-doped femtosecond fiber laser based on nonlinear polarization rotation,” Laser Phys.19(11), 2106–2109 (2009).
[CrossRef]

Ye, C.

J. Wang, Z. Luo, M. Zhou, and C. Ye, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics J.4(5), 1295–1305 (2012).
[CrossRef]

Zhang, H.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, and C. Haley, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Zhao, L.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Zhao, L. M.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Zhao, X.

Zheng, C. Y.

X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. S. Chen, and J. G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon56, 271–278 (2013).
[CrossRef]

Zhou, M.

J. Wang, Z. Luo, M. Zhou, and C. Ye, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics J.4(5), 1295–1305 (2012).
[CrossRef]

Zhou, W.-Y.

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

ACS Nano

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
[CrossRef] [PubMed]

Adv. Funct. Mater.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Adv. Opt. Photon.

Appl. Phys. Lett.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrai, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Carbon

X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. S. Chen, and J. G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon56, 271–278 (2013).
[CrossRef]

IEEE Photonics J.

J. Wang, Z. Luo, M. Zhou, and C. Ye, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics J.4(5), 1295–1305 (2012).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Laser Phys.

X. Yang and C. X. Yang, “Q-Switched mode-locking in an erbium-doped femtosecond fiber laser based on nonlinear polarization rotation,” Laser Phys.19(11), 2106–2109 (2009).
[CrossRef]

Laser Phys. Lett.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. N. Wang, W.-Y. Zhou, and J.-G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett.10(6), 065901 (2013).
[CrossRef]

Nat. Photonics

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, and C. Haley, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Nature

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490(7419), 192–200 (2012).
[CrossRef] [PubMed]

New J. Phys.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The schematic of the microfiber based GSA.

Fig. 2
Fig. 2

The schematic experimental setup for measurement of polarization dependent absorption of microfiber base GSA.

Fig. 3
Fig. 3

The measured nonlinear absorption of the microfiber based GSA for TE mode (red line) and TM mode (black line).

Fig. 4
Fig. 4

(a) The schematic diagram of cross-section of microfiber based GSA. (b) Calculated modal fields of TE (green line) and TM (blue line) modes in microfiber based GSA. The region of microfiber is in 10 < x< 16 μm. The graphene locates at x = 16μm.

Fig. 5
Fig. 5

The experimental setup of the EDFL with microfiber base GSA.

Fig. 6
Fig. 6

Output characteristics of EDFL operated in CML state. (a) Output pulse trains measured by oscilloscope. (b) Autocorrelation trace of laser output. (c) Output optical spectrum centered at 1568nm.

Fig. 7
Fig. 7

Output characteristics of EDFL operated in Q-switched state. (a) Output pulse trains measured by oscilloscope. (b) Output optical spectrum with the FWHM of 0.53nm.

Fig. 8
Fig. 8

Output pulse trains (a) and its close-up view (b) of EDFL operated in QML state.

Fig. 9
Fig. 9

Output spectrum of EDFL operated in CW state with the FWHM of 0.22nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E c = E sat,G E sat,A ΔR

Metrics