Abstract

We present a rapid technique for the patterning of complex structures with ~2µm resolution via multiphoton polymerization, through use of a single ultrashort pulse in combination with the spatial intensity modulation possible from a digital multimirror device. Sub-micron features have been achieved through the use of ten consecutive pulses.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 035005 (2013).
    [CrossRef]
  2. J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D, 72100D-9 (2009), doi:.
    [CrossRef]
  3. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003), doi:.
    [CrossRef]
  4. I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater. 9(3), 5511–5520 (2013).
    [CrossRef] [PubMed]
  5. R. E. Williams, (2002) US Patent 6413251.
  6. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
    [CrossRef] [PubMed]
  7. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [CrossRef]
  8. M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
    [CrossRef]
  9. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
    [CrossRef] [PubMed]
  10. L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith. 4(4), 041601 (2005).
  11. J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE 7596, 75960H, 75960H-11 (2010), doi:.
    [CrossRef]
  12. R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small 5(1), 120–125 (2009).
    [CrossRef] [PubMed]
  13. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
    [CrossRef] [PubMed]
  14. H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14(17), 7943–7953 (2006).
    [CrossRef] [PubMed]
  15. M. Tang, Z. C. Chen, Z. Q. Huang, Y. S. Choo, and M. H. Hong, “Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication,” Appl. Opt. 50(35), 6536–6542 (2011).
    [CrossRef] [PubMed]
  16. E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
    [CrossRef]
  17. H. Lin, B. Jia, and M. Gu, “Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication,” Opt. Lett. 36(3), 406–408 (2011).
    [CrossRef] [PubMed]
  18. M. Farsari, S. Huang, P. Birch, F. Claret-Tournier, R. Young, D. Budgett, C. Bradfield, and C. Chatwin, “Microfabrication by use of a spatial light modulator in the ultraviolet: Experimental results,” Opt. Lett. 24(8), 549–550 (1999).
    [CrossRef] [PubMed]
  19. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
    [CrossRef] [PubMed]
  20. Texas Instruments, (2012) http://www.ti.com/lit/ds/symlink/dlp3000.pdf (last accessed 5/4/2013)
  21. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
    [CrossRef] [PubMed]
  22. S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express 17(23), 20945–20951 (2009).
    [CrossRef] [PubMed]

2013 (2)

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 035005 (2013).
[CrossRef]

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater. 9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

2012 (2)

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (4)

2009 (4)

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[CrossRef]

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small 5(1), 120–125 (2009).
[CrossRef] [PubMed]

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express 17(23), 20945–20951 (2009).
[CrossRef] [PubMed]

2008 (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith. 4(4), 041601 (2005).

2004 (1)

2003 (1)

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003), doi:.
[CrossRef]

1999 (1)

Bickauskaite, G.

Birch, P.

Bradfield, C.

Brunner, R.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith. 4(4), 041601 (2005).

Budgett, D.

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Campagnola, P. J.

Chang, C.-Y.

Chatwin, C.

Chen, S.-J.

Chen, Z. C.

Cheng, L.-C.

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

Chichkov, B. N.

Choi, J.-W.

J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE 7596, 75960H, 75960H-11 (2010), doi:.
[CrossRef]

Choo, Y. S.

Claeyssens, F.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater. 9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Claret-Tournier, F.

Deparnay, A.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith. 4(4), 041601 (2005).

Deshpande, P.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater. 9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003), doi:.
[CrossRef]

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003), doi:.
[CrossRef]

Eason, R. W.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 035005 (2013).
[CrossRef]

Erdmann, L.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith. 4(4), 041601 (2005).

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Farsari, M.

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

M. Farsari, S. Huang, P. Birch, F. Claret-Tournier, R. Young, D. Budgett, C. Bradfield, and C. Chatwin, “Microfabrication by use of a spatial light modulator in the ultraviolet: Experimental results,” Opt. Lett. 24(8), 549–550 (1999).
[CrossRef] [PubMed]

Feinaeugle, M.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 035005 (2013).
[CrossRef]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gadonas, R.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

Gedvilas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Gertus, T.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gu, M.

Hasegawa, T.

Hinze, U.

Hong, M. H.

Huang, S.

Huang, Z. Q.

Irwin, M. D.

J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE 7596, 75960H, 75960H-11 (2010), doi:.
[CrossRef]

Jia, B.

Juodkazis, S.

Kaehr, B.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small 5(1), 120–125 (2009).
[CrossRef] [PubMed]

Kehoe, M.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

Koch, J.

Kondo, T.

Langle, M.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith. 4(4), 041601 (2005).

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Li, Y.-C.

Lien, C.-H.

Lin, H.

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

MacNeil, S.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater. 9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Malinauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

Maruo, S.

Maschke, G.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith. 4(4), 041601 (2005).

Matsuo, S.

Mills, B.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 035005 (2013).
[CrossRef]

Misawa, H.

Mizeikis, V.

Neira, J. E.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

Nielson, R.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small 5(1), 120–125 (2009).
[CrossRef] [PubMed]

Obata, K.

Ortega, I.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater. 9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Ovsianikov, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

Raciukaitis, G.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Rice, J. P.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

Rizvi, N.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 035005 (2013).
[CrossRef]

Rutkauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Ryan, A. J.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater. 9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Serbin, J.

Shear, J. B.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small 5(1), 120–125 (2009).
[CrossRef] [PubMed]

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003), doi:.
[CrossRef]

Smilgevicius, V.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Sones, C. L.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 035005 (2013).
[CrossRef]

Stankevicius, E.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Swanson, R.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

Tang, M.

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Wegener, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Wicker, R. B.

J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE 7596, 75960H, 75960H-11 (2010), doi:.
[CrossRef]

Yoshimura, N.

Young, R.

Zukauskas, A.

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Acta Biomater. (1)

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater. 9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Appl. Opt. (1)

J. Micro Nanolith. (1)

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith. 4(4), 041601 (2005).

J. Micromech. Microeng. (2)

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng. 23(3), 035005 (2013).
[CrossRef]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Nat. Photonics (1)

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (3)

J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE 7596, 75960H, 75960H-11 (2010), doi:.
[CrossRef]

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003), doi:.
[CrossRef]

Small (1)

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small 5(1), 120–125 (2009).
[CrossRef] [PubMed]

Other (2)

R. E. Williams, (2002) US Patent 6413251.

Texas Instruments, (2012) http://www.ti.com/lit/ds/symlink/dlp3000.pdf (last accessed 5/4/2013)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

SEM images of samples fabricated using 10 pulses, with insets showing the images loaded onto the DMD, viewed at 45 degrees.

Fig. 3
Fig. 3

SEM image of structure fabricated using a single pulse. Insets show SEM of a structure fabricated under the same conditions and DMD pattern used.

Fig. 4
Fig. 4

SEM images of a 3D spiral pattern fabricated in a single pulse, in a ~100μm thick resist, with inset showing the DMD pattern used.

Fig. 5
Fig. 5

Part of a large contiguous array of objects that have been fabricated using a single shot, stitched together by careful selection of object separation.

Metrics