Abstract

We present a rapid technique for the patterning of complex structures with ~2µm resolution via multiphoton polymerization, through use of a single ultrashort pulse in combination with the spatial intensity modulation possible from a digital multimirror device. Sub-micron features have been achieved through the use of ten consecutive pulses.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng.23(3), 035005 (2013).
    [CrossRef]
  2. J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE7210, 72100D, 72100D-9 (2009), doi:.
    [CrossRef]
  3. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, 14–25 (2003), doi:.
    [CrossRef]
  4. I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater.9(3), 5511–5520 (2013).
    [CrossRef] [PubMed]
  5. R. E. Williams, (2002) US Patent 6413251.
  6. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18(10), 10209–10221 (2010).
    [CrossRef] [PubMed]
  7. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
    [CrossRef]
  8. M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
    [CrossRef]
  9. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express12(21), 5221–5228 (2004).
    [CrossRef] [PubMed]
  10. L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith.4(4), 041601 (2005).
  11. J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE7596, 75960H, 75960H-11 (2010), doi:.
    [CrossRef]
  12. R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small5(1), 120–125 (2009).
    [CrossRef] [PubMed]
  13. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express18(16), 17193–17200 (2010).
    [CrossRef] [PubMed]
  14. H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express14(17), 7943–7953 (2006).
    [CrossRef] [PubMed]
  15. M. Tang, Z. C. Chen, Z. Q. Huang, Y. S. Choo, and M. H. Hong, “Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication,” Appl. Opt.50(35), 6536–6542 (2011).
    [CrossRef] [PubMed]
  16. E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
    [CrossRef]
  17. H. Lin, B. Jia, and M. Gu, “Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication,” Opt. Lett.36(3), 406–408 (2011).
    [CrossRef] [PubMed]
  18. M. Farsari, S. Huang, P. Birch, F. Claret-Tournier, R. Young, D. Budgett, C. Bradfield, and C. Chatwin, “Microfabrication by use of a spatial light modulator in the ultraviolet: Experimental results,” Opt. Lett.24(8), 549–550 (1999).
    [CrossRef] [PubMed]
  19. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012).
    [CrossRef] [PubMed]
  20. Texas Instruments, (2012) http://www.ti.com/lit/ds/symlink/dlp3000.pdf (last accessed 5/4/2013)
  21. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
    [CrossRef] [PubMed]
  22. S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17(23), 20945–20951 (2009).
    [CrossRef] [PubMed]

2013 (2)

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater.9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng.23(3), 035005 (2013).
[CrossRef]

2012 (2)

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (4)

2009 (4)

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small5(1), 120–125 (2009).
[CrossRef] [PubMed]

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17(23), 20945–20951 (2009).
[CrossRef] [PubMed]

2008 (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith.4(4), 041601 (2005).

2004 (1)

2003 (1)

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, 14–25 (2003), doi:.
[CrossRef]

1999 (1)

Bickauskaite, G.

Birch, P.

Bradfield, C.

Brunner, R.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith.4(4), 041601 (2005).

Budgett, D.

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Campagnola, P. J.

Chang, C.-Y.

Chatwin, C.

Chen, S.-J.

Chen, Z. C.

Cheng, L.-C.

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

Chichkov, B. N.

Choi, J.-W.

J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE7596, 75960H, 75960H-11 (2010), doi:.
[CrossRef]

Choo, Y. S.

Claeyssens, F.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater.9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Claret-Tournier, F.

Deparnay, A.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith.4(4), 041601 (2005).

Deshpande, P.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater.9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, 14–25 (2003), doi:.
[CrossRef]

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, 14–25 (2003), doi:.
[CrossRef]

Eason, R. W.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng.23(3), 035005 (2013).
[CrossRef]

Erdmann, L.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith.4(4), 041601 (2005).

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Farsari, M.

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

M. Farsari, S. Huang, P. Birch, F. Claret-Tournier, R. Young, D. Budgett, C. Bradfield, and C. Chatwin, “Microfabrication by use of a spatial light modulator in the ultraviolet: Experimental results,” Opt. Lett.24(8), 549–550 (1999).
[CrossRef] [PubMed]

Feinaeugle, M.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng.23(3), 035005 (2013).
[CrossRef]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gadonas, R.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

Gedvilas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

Gertus, T.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gu, M.

Hasegawa, T.

Hinze, U.

Hong, M. H.

Huang, S.

Huang, Z. Q.

Irwin, M. D.

J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE7596, 75960H, 75960H-11 (2010), doi:.
[CrossRef]

Jia, B.

Juodkazis, S.

Kaehr, B.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small5(1), 120–125 (2009).
[CrossRef] [PubMed]

Kehoe, M.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

Koch, J.

Kondo, T.

Langle, M.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith.4(4), 041601 (2005).

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Li, Y.-C.

Lien, C.-H.

Lin, H.

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

MacNeil, S.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater.9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Malinauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

Maruo, S.

Maschke, G.

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith.4(4), 041601 (2005).

Matsuo, S.

Mills, B.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng.23(3), 035005 (2013).
[CrossRef]

Misawa, H.

Mizeikis, V.

Neira, J. E.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

Nielson, R.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small5(1), 120–125 (2009).
[CrossRef] [PubMed]

Obata, K.

Ortega, I.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater.9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Ovsianikov, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

Raciukaitis, G.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

Rice, J. P.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

Rizvi, N.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng.23(3), 035005 (2013).
[CrossRef]

Rutkauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

Ryan, A. J.

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater.9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Serbin, J.

Shear, J. B.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small5(1), 120–125 (2009).
[CrossRef] [PubMed]

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, 14–25 (2003), doi:.
[CrossRef]

Smilgevicius, V.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

Sones, C. L.

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng.23(3), 035005 (2013).
[CrossRef]

Stankevicius, E.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Swanson, R.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

Tang, M.

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Wegener, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Wicker, R. B.

J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE7596, 75960H, 75960H-11 (2010), doi:.
[CrossRef]

Yoshimura, N.

Young, R.

Zukauskas, A.

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Acta Biomater. (1)

I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater.9(3), 5511–5520 (2013).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Appl. Opt. (1)

J. Micro Nanolith. (1)

L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith.4(4), 041601 (2005).

J. Micromech. Microeng. (2)

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng.23(3), 035005 (2013).
[CrossRef]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012).
[CrossRef]

Nat. Photonics (1)

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (3)

J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE7596, 75960H, 75960H-11 (2010), doi:.
[CrossRef]

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE7210, 72100D, 72100D-9 (2009), doi:.
[CrossRef]

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, 14–25 (2003), doi:.
[CrossRef]

Small (1)

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small5(1), 120–125 (2009).
[CrossRef] [PubMed]

Other (2)

R. E. Williams, (2002) US Patent 6413251.

Texas Instruments, (2012) http://www.ti.com/lit/ds/symlink/dlp3000.pdf (last accessed 5/4/2013)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

SEM images of samples fabricated using 10 pulses, with insets showing the images loaded onto the DMD, viewed at 45 degrees.

Fig. 3
Fig. 3

SEM image of structure fabricated using a single pulse. Insets show SEM of a structure fabricated under the same conditions and DMD pattern used.

Fig. 4
Fig. 4

SEM images of a 3D spiral pattern fabricated in a single pulse, in a ~100μm thick resist, with inset showing the DMD pattern used.

Fig. 5
Fig. 5

Part of a large contiguous array of objects that have been fabricated using a single shot, stitched together by careful selection of object separation.

Metrics