Abstract

We present a novel scheme of frequency scan and wavelength modulation of a difference-frequency-generation source for comb-referenced sensitive spectroscopy. While the pump and signal frequencies are phase-locked to an optical frequency comb (OFC), the offset frequency between the signal wave and the nearest comb tooth is modulated to apply a wavelength-modulation technique, and the idler wave frequency is repeatedly swept for signal accumulation by changing the repetition frequency of the OFC. The spectrometer is applied to absolute frequency measurement of weak hyperfine-resolved rovibration transitions of the ν1 band of CH3I, and the uncertainty in frequency determination is reduced by one order of magnitude in compared with that of the previous work published in Optics Express 20, 9178-9186 (2012).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B80(2), 141–145 (2005).
    [CrossRef]
  2. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
    [CrossRef]
  3. M. Abe, K. Takahata, and H. Sasada, “Sub-Doppler resolution 3.4 microm spectrometer with an efficient difference-frequency-generation source,” Opt. Lett.34(11), 1744–1746 (2009).
    [CrossRef] [PubMed]
  4. K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80(3), 032518 (2009).
    [CrossRef]
  5. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett.104(11), 110801 (2010).
    [CrossRef] [PubMed]
  6. S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the v1 = 1 and (v2, v6l) = (1, 22) states,” Phys. Rev. A 83 (1), 012505 (2011), Erratum: Phys. Rev. A87(3), 039911 (2013).
    [CrossRef]
  7. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, “Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10-11.,” Opt. Express19(24), 23878–23888 (2011).
    [CrossRef] [PubMed]
  8. J. T. Remillard, D. Uy, W. H. Weber, F. Capasso, C. Gmachl, A. L. Hutchinson, D. Sivco, J. N. Baillargeon, and A. Y. Cho, “Sub-Doppler resolution limited Lamb-dip spectroscopy of NO with a quantum cascade distributed feedback laser,” Opt. Express7(7), 243–248 (2000).
    [CrossRef] [PubMed]
  9. A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser,” Opt. Lett.31(20), 3040–3042 (2006).
    [CrossRef] [PubMed]
  10. S. Borri, S. Bartalini, I. Galli, P. Cancio, G. Giusfredi, D. Mazzotti, A. Castrillo, L. Gianfrani, and P. De Natale, “Lamb-dip-locked quantum cascade laser for comb-referenced IR absolute frequency measurements,” Opt. Express16(15), 11637–11646 (2008).
    [CrossRef] [PubMed]
  11. E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett.26(18), 1430–1432 (2001).
    [CrossRef] [PubMed]
  12. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20(8), 9178–9186 (2012).
    [CrossRef] [PubMed]
  13. H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett.109(26), 263002 (2012).
    [CrossRef] [PubMed]
  14. K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
    [CrossRef]
  15. M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, “Accurate transition frequency list of the v3 band of methane from sub-Doppler resolution comb-referenced spectroscopy,” J. Opt. Soc. Am. B30(4), 1027–1035 (2013).
    [CrossRef]
  16. J. L. Hall and J. A. Magyar, “High resolution saturated absorption studies of methane and some methyl-halides,” in High-Resolution Laser Spectroscopy, K. Shimoda ed. (Springer-Verlag, 1976).
  17. S. Carocci, A. Di Lieto, A. Menciassi, P. Minguzzi, and M. Tonelli, “The molecular constants of 12CH3I in the ground and v6 = 1 excited vibrational state,” J. Mol. Spectrosc.191(2), 368–373 (1998).
  18. R. Paso, V.-M. Horneman, and R. Anttila, “Analysis of ν1 band of CH3I,” J. Mol. Spectrosc.101(1), 193–198 (1983).
    [CrossRef]
  19. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
    [CrossRef]
  20. R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane lines at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett.22(1), 4–8 (1969).
    [CrossRef]

2013 (2)

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the v1 = 1 and (v2, v6l) = (1, 22) states,” Phys. Rev. A 83 (1), 012505 (2011), Erratum: Phys. Rev. A87(3), 039911 (2013).
[CrossRef]

M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, “Accurate transition frequency list of the v3 band of methane from sub-Doppler resolution comb-referenced spectroscopy,” J. Opt. Soc. Am. B30(4), 1027–1035 (2013).
[CrossRef]

2012 (3)

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20(8), 9178–9186 (2012).
[CrossRef] [PubMed]

H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett.109(26), 263002 (2012).
[CrossRef] [PubMed]

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
[CrossRef]

2011 (1)

2010 (1)

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett.104(11), 110801 (2010).
[CrossRef] [PubMed]

2009 (3)

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80(3), 032518 (2009).
[CrossRef]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

M. Abe, K. Takahata, and H. Sasada, “Sub-Doppler resolution 3.4 microm spectrometer with an efficient difference-frequency-generation source,” Opt. Lett.34(11), 1744–1746 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (2)

A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser,” Opt. Lett.31(20), 3040–3042 (2006).
[CrossRef] [PubMed]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
[CrossRef]

2005 (1)

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B80(2), 141–145 (2005).
[CrossRef]

2001 (1)

2000 (1)

1998 (1)

S. Carocci, A. Di Lieto, A. Menciassi, P. Minguzzi, and M. Tonelli, “The molecular constants of 12CH3I in the ground and v6 = 1 excited vibrational state,” J. Mol. Spectrosc.191(2), 368–373 (1998).

1983 (1)

R. Paso, V.-M. Horneman, and R. Anttila, “Analysis of ν1 band of CH3I,” J. Mol. Spectrosc.101(1), 193–198 (1983).
[CrossRef]

1969 (1)

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane lines at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett.22(1), 4–8 (1969).
[CrossRef]

Abe, M.

Amano, T.

H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett.109(26), 263002 (2012).
[CrossRef] [PubMed]

Anttila, R.

R. Paso, V.-M. Horneman, and R. Anttila, “Analysis of ν1 band of CH3I,” J. Mol. Spectrosc.101(1), 193–198 (1983).
[CrossRef]

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Asobe, M.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
[CrossRef]

Baillargeon, J. N.

Barger, R. L.

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane lines at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett.22(1), 4–8 (1969).
[CrossRef]

Bartalini, S.

Borri, S.

Braxmaier, C.

Cancio, P.

Capasso, F.

Carocci, S.

S. Carocci, A. Di Lieto, A. Menciassi, P. Minguzzi, and M. Tonelli, “The molecular constants of 12CH3I in the ground and v6 = 1 excited vibrational state,” J. Mol. Spectrosc.191(2), 368–373 (1998).

Castrillo, A.

Chen, H.-C.

H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett.109(26), 263002 (2012).
[CrossRef] [PubMed]

Cho, A. Y.

Crabtree, K. N.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
[CrossRef]

De Natale, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20(8), 9178–9186 (2012).
[CrossRef] [PubMed]

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett.104(11), 110801 (2010).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, I. Galli, P. Cancio, G. Giusfredi, D. Mazzotti, A. Castrillo, L. Gianfrani, and P. De Natale, “Lamb-dip-locked quantum cascade laser for comb-referenced IR absolute frequency measurements,” Opt. Express16(15), 11637–11646 (2008).
[CrossRef] [PubMed]

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B80(2), 141–145 (2005).
[CrossRef]

De Rosa, M.

De Tommasi, E.

Dekorsy, D.

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Di Lieto, A.

S. Carocci, A. Di Lieto, A. Menciassi, P. Minguzzi, and M. Tonelli, “The molecular constants of 12CH3I in the ground and v6 = 1 excited vibrational state,” J. Mol. Spectrosc.191(2), 368–373 (1998).

Faist, J.

Gagliardi, G.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B80(2), 141–145 (2005).
[CrossRef]

Galli, I.

Gianfrani, L.

Giusfredi, G.

Gmachl, C.

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Hall, J. L.

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane lines at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett.22(1), 4–8 (1969).
[CrossRef]

Hodges, J. N.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
[CrossRef]

Holzwarth, R.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Hong, F. L.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80(3), 032518 (2009).
[CrossRef]

Horneman, V.-M.

R. Paso, V.-M. Horneman, and R. Anttila, “Analysis of ν1 band of CH3I,” J. Mol. Spectrosc.101(1), 193–198 (1983).
[CrossRef]

Hsiao, C.-Y.

H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett.109(26), 263002 (2012).
[CrossRef] [PubMed]

Hutchinson, A. L.

Inaba, H.

S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, “Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10-11.,” Opt. Express19(24), 23878–23888 (2011).
[CrossRef] [PubMed]

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80(3), 032518 (2009).
[CrossRef]

Iwakuni, K.

Jenkins, P. A.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
[CrossRef]

Kelly, J. E.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
[CrossRef]

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Kobayashi, T.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80(3), 032518 (2009).
[CrossRef]

Kovalchuk, E. V.

Lvovsky, A. I.

Maddaloni, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20(8), 9178–9186 (2012).
[CrossRef] [PubMed]

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B80(2), 141–145 (2005).
[CrossRef]

Magari, K.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
[CrossRef]

Malara, P.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B80(2), 141–145 (2005).
[CrossRef]

Mazzotti, D.

McCall, B. J.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
[CrossRef]

Menciassi, A.

S. Carocci, A. Di Lieto, A. Menciassi, P. Minguzzi, and M. Tonelli, “The molecular constants of 12CH3I in the ground and v6 = 1 excited vibrational state,” J. Mol. Spectrosc.191(2), 368–373 (1998).

Minguzzi, P.

S. Carocci, A. Di Lieto, A. Menciassi, P. Minguzzi, and M. Tonelli, “The molecular constants of 12CH3I in the ground and v6 = 1 excited vibrational state,” J. Mol. Spectrosc.191(2), 368–373 (1998).

Miyazawa, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
[CrossRef]

Mlynek, J.

Mosca, S.

Nakajima, Y.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80(3), 032518 (2009).
[CrossRef]

Nakayama, H.

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the v1 = 1 and (v2, v6l) = (1, 22) states,” Phys. Rev. A 83 (1), 012505 (2011), Erratum: Phys. Rev. A87(3), 039911 (2013).
[CrossRef]

S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, “Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10-11.,” Opt. Express19(24), 23878–23888 (2011).
[CrossRef] [PubMed]

Nishida, Y.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
[CrossRef]

Okubo, S.

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the v1 = 1 and (v2, v6l) = (1, 22) states,” Phys. Rev. A 83 (1), 012505 (2011), Erratum: Phys. Rev. A87(3), 039911 (2013).
[CrossRef]

M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, “Accurate transition frequency list of the v3 band of methane from sub-Doppler resolution comb-referenced spectroscopy,” J. Opt. Soc. Am. B30(4), 1027–1035 (2013).
[CrossRef]

S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, “Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10-11.,” Opt. Express19(24), 23878–23888 (2011).
[CrossRef] [PubMed]

Paso, R.

R. Paso, V.-M. Horneman, and R. Anttila, “Analysis of ν1 band of CH3I,” J. Mol. Spectrosc.101(1), 193–198 (1983).
[CrossRef]

Peng, J.-L.

H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett.109(26), 263002 (2012).
[CrossRef] [PubMed]

Perry, A. J.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
[CrossRef]

Peters, A.

Remillard, J. T.

Ricciardi, I.

Rocco, A.

Sasada, H.

M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, “Accurate transition frequency list of the v3 band of methane from sub-Doppler resolution comb-referenced spectroscopy,” J. Opt. Soc. Am. B30(4), 1027–1035 (2013).
[CrossRef]

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the v1 = 1 and (v2, v6l) = (1, 22) states,” Phys. Rev. A 83 (1), 012505 (2011), Erratum: Phys. Rev. A87(3), 039911 (2013).
[CrossRef]

S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, “Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10-11.,” Opt. Express19(24), 23878–23888 (2011).
[CrossRef] [PubMed]

M. Abe, K. Takahata, and H. Sasada, “Sub-Doppler resolution 3.4 microm spectrometer with an efficient difference-frequency-generation source,” Opt. Lett.34(11), 1744–1746 (2009).
[CrossRef] [PubMed]

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80(3), 032518 (2009).
[CrossRef]

Schiller, S.

Shy, J.-T.

H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett.109(26), 263002 (2012).
[CrossRef] [PubMed]

Siller, B. M.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
[CrossRef]

Sirigu, L.

Sivco, D.

Suzuki, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
[CrossRef]

Tadanaga, O.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
[CrossRef]

Takahata, K.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80(3), 032518 (2009).
[CrossRef]

M. Abe, K. Takahata, and H. Sasada, “Sub-Doppler resolution 3.4 microm spectrometer with an efficient difference-frequency-generation source,” Opt. Lett.34(11), 1744–1746 (2009).
[CrossRef] [PubMed]

Tonelli, M.

S. Carocci, A. Di Lieto, A. Menciassi, P. Minguzzi, and M. Tonelli, “The molecular constants of 12CH3I in the ground and v6 = 1 excited vibrational state,” J. Mol. Spectrosc.191(2), 368–373 (1998).

Uy, D.

Weber, W. H.

Yanagawa, T.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
[CrossRef]

Zondy, J.-J.

Appl. Phys. B (1)

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B80(2), 141–145 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett.88(6), 061101 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012).
[CrossRef]

Erratum: Phys. Rev. A (1)

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the v1 = 1 and (v2, v6l) = (1, 22) states,” Phys. Rev. A 83 (1), 012505 (2011), Erratum: Phys. Rev. A87(3), 039911 (2013).
[CrossRef]

J. Mol. Spectrosc. (2)

S. Carocci, A. Di Lieto, A. Menciassi, P. Minguzzi, and M. Tonelli, “The molecular constants of 12CH3I in the ground and v6 = 1 excited vibrational state,” J. Mol. Spectrosc.191(2), 368–373 (1998).

R. Paso, V.-M. Horneman, and R. Anttila, “Analysis of ν1 band of CH3I,” J. Mol. Spectrosc.101(1), 193–198 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (1)

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80(3), 032518 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett.104(11), 110801 (2010).
[CrossRef] [PubMed]

H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett.109(26), 263002 (2012).
[CrossRef] [PubMed]

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane lines at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett.22(1), 4–8 (1969).
[CrossRef]

Other (1)

J. L. Hall and J. A. Magyar, “High resolution saturated absorption studies of methane and some methyl-halides,” in High-Resolution Laser Spectroscopy, K. Shimoda ed. (Springer-Verlag, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experiment setup. A 3.4-μm idler wave is generated in the PPLN. The pump source is a Nd:YAG laser and the signal source is an ECLD. The frequencies of the pump and signal waves are phase-locked to an OFC, and the idler wave frequency is swept by changing the frep. All synthesizers are linked to the Temps Atomique International (TAI). OBPFs are optical band-pass filters, BP is a Brewster plate, CS is a current source, and TMP is a temperature controller.

Fig. 2
Fig. 2

Experiment setup for determining of the difference in mode number.

Fig. 3
Fig. 3

Observed Doppler-limited absorption spectra of CH3I (black) and CH4 (red). The blue curve is the frequency marker, which is magnified in (b).

Fig. 4
Fig. 4

Recorded spectrum of the P(7) F2(2) line of 12CH4. The black dots denote the recorded spectrum, and the red curve denotes the calculated spectrum. The horizontal axis is absolute frequency.

Fig. 5
Fig. 5

Recorded spectrum of P(22, 6) transition in the v 1 band of 12CH3I. The red curve denotes the calculated spectrum.

Fig. 6
Fig. 6

Recorded spectrum of P(23, 5) transition in the v 1 band of 12CH3I. The red curve denotes the calculated spectrum.

Tables (2)

Tables Icon

Table 1 Measured transition frequencies. F” is the total angular moment of the lower level. Obs. – Cal. is the observed transition frequency minus the transition frequency calculated from the determined constants in Table 2.

Tables Icon

Table 2 Determined molecular constants

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f DFG = f pump f signal ,
f pump = n pump f rep + f CEO +Δ f pump
f signal = n signal f rep + f CEO +Δ f signal ,
f DFG =( n pump n signal ) f rep +Δ f pump Δ f signal ,
E v,J,K,F = W v,J,K rovib + W v,J,K,F hypfn .
W v,J,K,F hypfn ={ [ ( eqQ ) v + χ v,J J( J+1 )+ χ v,K K 2 ]×( 3 K 2 J( J+1 ) 1 )+ χ v,D K 2 ( 4 K 2 1 ) J( J+1 ) }Y( I,J,F ).
σ total = σ 2 + ( 3.7kHz ) 2 .

Metrics